MXIM

GRAPHICS MODULE
Software Specification

Version 3.0

Revision 1.1

July 20, 2009

MXM Graphics Module Software Specification Version 3.0

Document Change History

Revision | Date Responsible | Description of Ghange
1.0 October 29, 2008 LPL, SM Initial Release
1.01 December 19, 2008 LPL, SM Overview : Specification 1.0.1 primarily corrects

discrepancies between the released 1.0 SDK and the
1.0 specification. The 1.0 SDK already supports all
items in spec 1.0.1 except added power state
management options. No SIS or interface changes are
required from SDK 1.0 to use existing 1.0 functionality.

2.5.1 Minor phrasing change due to addition of pre-P-
state change callback (see 4.3.7.4)

2.5.2 Examples for use of slowdown input to module.

3.2.1 Typo and two outdated entries corrected in
MxM3 EFl INTERFACE struct. Rest of document was

already correct in 1.0, struct now matches.

3.2.2 MxmReturnSpeclevel listed an EDID read
function which did not exist in the 1.0 document.
Removed, and renumbered the list entries to match.

3.3.1 Typo (MXM_FUNC_EVENLIST) corrected. Typo in
sample GUID for event 0x80 corrected (0xFB, should
have been 0xF8 — this was already correct in the
associated comment, the MXM _FUNC EVENTLIST
table, and the sample MOF. Updated sample code and
MOF to include events OxEF, 0xF0, and to remove
event 0xD0 (see 4.3.7.1 and 4.3.7.2).

3.3.2 & 3.3.2.1 Corrected values in sample code.

4.1.1 Changed BL value numbering on return when
retrieving EDID to avoid conflict with MXM 2.x. Not
used by SDK 1.0 VBIOS or tools.

4.1.4 Changed register to return pointer to VBIOS, to
more easily support blocks greater than 64K. Not used
by SDK 1.0 VBIOS or tools.

4.3.7.1 Replaced notification 0xD0 with OxEF

4.3.7.2 Replaced notification 0xD0 with 0xF0. Clarified
that SBIOS input on hotkey selection is optional.
4.3.7.4 Added pre-P-state-change callback option to
MXM_FUNC _MXCB. Added bits to return parameters to
match the input parameters.

4.3.7.5 Two ‘future’ section GUIDs updated (not used
in existing spec). Replaced notify 0xD0 (notify for
update of both MXPP and MXDP) with OxEF and 0xFO
(notifies for updates of MXPP and MXDP respectively).

MXM Graphics Module Software Specification Version 3.0

Revision

Date

Responsible

Description of Change

Updated example to not reference 0xDO.

5.2 Qlarified DDC association for DVI-l. Added
separate enumerations for the DP Aux ports in |2C field
(0x9-0xC instead of all using 0x8 — already in SDK 1.0).
Clarified link association in Digital Connection field.

5.5 Clarified use of PWR_LEVEL#. Added backward-
compatible bit for GPIC-only power state select.

1.1

July 20, 2009

LPL, SM

Overview : Specification 1.1 updates fields for new
display standards, addresses possibly confusing
references to uses of the PWR_LEVEL# pin, and
reverts a DDG association made in release 1.0.1 which
was not adopted in the MXM hardware specification.
Existing implementations of the 1.0 and 1.0.1
specifications are not affected by these updates.

2.5 and 5.5 Dropped references to alternate uses of
PWR LEVEL# pin, this pin is intended solely to indicate
whether full power is or is not available.

3.3.2 Corrected sample code references for ACPl
version checking to compare to 0x300 instead of 0x30.

4.1.3 Clarified valid parameters for Boot Message
System BIOS callback.4.3.7.4 Added new
MXM_FUNC_MXCB callback options to support SBIOS
notification on certain events. Since this is a new
feature, it may not be supported by all GPU drivers.

4.3.10.3 Extended external digital connector table
entries for HOMI 1.2 to also apply to HDMI 1.3.

4.3.10.3 Added DisplayPort 1.2 to list of types of
external digital connectors.

4.3.10.4 Added eDP to list of types of internal flat
panels.

5.2 Added eDP to the list of Connector Types.

5.2 Default DDC association for DVI-| when using
TMDS-over-LVDS moved to LVDS DDC instead of
VGA DDC. MXM software should use the DDC field in

the Qutput Device Structure to correctly support both
old and new default assignments.

MXM Graphics Module Software Specification Version 3.0

Table of Contents

1 MXM Version 3.0 Software OVEIVIEW ...t e a st e s e s e s e aaneaaannn s 1
1.1. Software Control of the MXM ... e 1
1.1.1. M A AN A .. e 2
1.1.2. MXM Versioning and Interoperability ... 3
1.1.3. MMM v 3.0 Interface Requirements ..o 4

1.2. Software Support for OEM Modules e 3
1.3 MM VB OIS 6

2 The MXM System Information StrUCIURE ... s s e sr s aee s anssnananansananasnsnsnnnns T
2.1, MXM Header SIrUCTUIEu et a et a e s e e s e s s e e aae e aaeeaaaenns 7
2.2, MXM OULPUL Device StrUCIUINE ..ottt e e ae e e en e e an e ansna e eenannanenn 7
2.2.1. Sharing Display Output or DDC/ Aux Lines Across System Connectors................ 8

2.3. MXM System Cooling Capability Structure ...t 9
2.4, MAM Thermal SETUCIUNE. ..o e verea s si e sre e ans e aanaaanna e 9
2.5 MXM Input Power StruCtURE. ... e e e e e ee e enean 9
2.5.1. L] LT o LT = (== T 10
2.5.2. Changing Power States 11
2.5.2.1. Asserting the Power State Fin (PWR LEVEL#)coccoeeniiiiiii i 11
2.5.2.2. ACPI Notifications. ... e 11
2.5.2.3. 8 L0 = 12

2.6. MXM GPIO Device Structure and GPIO Fin Entry Structure ..., 14
2.7. MXM Vendor Speciiic SIrUCTUNE ... s e sa s se s s s s s s asna s s nansnaaaans 15
2.8. MXM Backlight Control SErUCIUIEttt e e aaie e i e aieeaseeasaaannes 15
2.9. MXM Fan Control Structure and Fan Speed StruCture ... v eeee 15
2,10, MXM ChecksUM Byte.ot e e e e e s nr e e e e e s aassn e e e e snnnnnaaeeas 16

3 Core MXIM System INEerfates. ..ot aa e an s anansanannann s 17
3.1, Required MXM Int15h System BIOS Callbackscccoviviiiiiiiiiiiiiii e 17
3.1.1. Function 0 — Return Specification Support Level ..., 18
3.1.2 Function 1 — Return a Pointer to the MXM Structure ... 19

3.2. Required MXM EFl System BIOS Callbacksccoeiiiii e 19

MXM Graphics Module Software Specification Version 3.0

3.2.1. EFl Interface. e aeaes 20
3.2.2. MxmReturnSpecLevel — Return Specification Support Levelc.ooovvviniinnnn.., 21
3.2.3. MxmReturnStructure — Return Pointer to MXM Structure ..., 21
3.3. Reqguired MXM ACPI Methods........ov e e e 21
3.3.1. Accessing MXM ACPI Methods via WIMI ... 23
3.3.2. ~ DSM (Device Specific Methods) ..o aae s 28
3.3.2.1. MXM_FUNC_MXSS — Return Supported Sub-Functions.........ceevveiiiinniinnnn, 30
3.3.2.2. MXM_FUNCG MXMI — Return Specification Support Levelc.evvvvviniiiiininnnn, 31
3.3.2.3. MXM_FUNC_MXMS — Return MXM Structure ... 32

4 Additional MXM System INerfatES s s sn s sns s snssn s sn s rnenssnnnnes 34
4.1. Additional MXM INT 15H System BIOS Gallbacksccoooviiiiiiii 34
4.1.1. Function 2 — Return a Pointer to the EDID Structure for the Internal Panel...... 34
4.1.2. Function 3 — Select Output Device Channel..........coooooiiiiiiiiiieieeie e 35
4.1.3. FUNCHION 4 — BoOt MESSa0E cr e ciere e e e e ne e s aeaeaeaeenerananans 36
4.1.4. Function 7 — Return a Pointer to the VBIOS Image for ROM-Less Adapters...... 36
4.1.5. Function 8 — Check Availability of Quiput Devicecenvieeeeeie i 37
4.1.6. Function 9 — Identify Output DeviCes.......cooviiiiiiie e 37
4.2. Additional MXM EFl System BIOS Callbacks........ccvneveeeveeeee e 38
4.2.1. Returning the EDID Structure for the Internal Panelcccooevviiiiiiiiiiiininnns. 38
4.2.2, MxmSelect Qutput Device — Select Output Device Channel....o.oceeeiiiveiiiiniieannns 38
4.2.3. MxmCheckQutputDevice — Check Availability of Qutput Devicecc...eee.. 39
4.2.4. Return a Pointer to the VBIOS image for ROM-less Adapters...........o.ooeevianen, 39
425, Identify Output DeVICES ... 39
4.3. Additional MXM ACPl Methods ..o e e en e 40
431, Loading VBIOS image for ROM-less Adapters...........ooeeviiiieiiiiiciiiiieiieiieiie e 40
4.3.2. ACPI NOtFICAEION ..t a e e aam e aaes 40
43.3. Returning the EDID Structure for the LVDS Panel via ACPl ..., 40
4.3.4. Retrieving the Backlight Control Settings for the LVDS Panel via ACPI 40
4.3.5. Check Availability of Qutput Device (Docking Stations and LID Display State) .. 40
4.3.6. Selecting the Display Output via ACP ... 41
4.3.7. ~DSM (Device Specific Methods)ovniiiiiiiie e 42
4.3.7.1. MXM_FUNC_MXPP — Platform Policy.......cooiii e 42

MXM Graphics Module Software Specification Version 3.0

4.3.7.2. MXM_FUNC_MXDP — Display StatUSc.uoveeeiveeeeieeeeieeeeeeereeeve e e e 44
4.3.7.3. MXM_FUNC_MDTL — Display Toggle List.......ooooiiiiiiiie 47
4.3.7.4. MXM_FUNC_MXCB — Query/Call System Callbacks...........cvevvveveivieneennn.. 47
4.3.7.5. MXIM FUNG EVENTLIST ..ot eei e e s 49
4.3.8. MXDS — Select Display Output Channel.. ..., 51
4.3.9. MXMX — Select Display Data Channel........c..oovvviieiiiiiieeeeeiii e 52
4.3.10. USE OF DO .. ittt e aan et e e 53
4.3.10.1. TYPE T = VGA ORI ittt te et e an s b e e e saasn s s saesaansnsnnans 955
4.3.10.2. Type 2 — Analog TV/HDTV CoNNECIOr ... e 26
4.3.10.3. Type 3 — External Digital Conneciors........ccvvieiiiiiiiiiiiiiiirieiieriesrasiaerasaneens 56
4.3.104. Typed —Internal Fat Panels. ..., 57

4.4, Serial ROM to Access the MXM v 3.0 SIructureooovieiiiiiiie e, 57
4.4.1. Accessing MXM ROM Via WMI ... e e 58

5 MXM Structure Field Definitions. ..o 59
5.1. MXMHeader SEIUCIUIE ...t e sasbaR e e e e e ann s annn amnaa e 59
5.2, MAM OULPUL DEVICE StrUCTUIEee et eeeee et te e ase e ansae s esaanenssnsnsmannsnsansnannanns 60
5.3. MXM System Cooling Capability Structure ..., 64
9.4, MXM Thermal StrUCIUIE. ... ettt e e a e e a e anns 64
5.5, MXM INPpUt POWEE StrUCTUIEuiiitiiiiiii et e st e s e e sin e e sisassnnassnanees 65
5.6. MXM GPIO DeVvite SIrUCIUIE ... oo eit e s it e eadeis e e aea e easan s asnasannnasasnaasasnnataens 66
5.7. MXM Vendor Specific SIFUCTUIE it e eiaerie e e bb et e srnsaenaannssananns 69
5.8, MXM Backlight Control SrUCtUre . era s ea e s aea e s s e e assanansanansaaaans 69
5.9, MXM Fan Control StructUre e 71

Applicable DoCUM BT S e et e 73

MXM Graphics Module Software Specification Version 3.0

List of Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 3-1.

Non-MXM Software Combination Matrix Hlustration..............ccooooiiiiiiiiiciieeenn. 2
MXIM Software HIUSLFatIoNo e 2
XM Capabilities ... e 3
MXM v 3.0 Software Compatibility ... 3
MNamespace with MXM Methods BExample ..., 22

vii

vili

MXM Graphics Module Software Specification Version 3.0

List of Tables

Table 3-1. MXM FUNC MXSS Return Buffero eenes 3
Table 3-2. MXM_FUNC_MXMI Return Buffer ... 32
Table 3-3. MXM_FUNC _MXMS Structure ldentifier............o 32
Table 4-1. MXM_FUNC_MXPP Platform POliCY ..o 42
Table 4-2. MXM_FUNC NMXPP Return Buffer Policy Status..........ccoovviiiiiiiiiiicciiae, 14
Table 4-3. MXM_FUNC _MXDP Display StatUs.o 45
Table 4-4. MXM FUNC MXDP Return Buffar Status. ... oo, 46
Table 4-5. MXM_FUNGC MXCB Gallbackccouiviiiiiiiiiii vt a s e aanaaann. 48
Table 4-6. MXM _FUNC MXCB Return Buffer Callbacks..........cooooveiiiiiiiiiiiiieeieeeeeveei e 48
Table 4-7. GUID List for Notification Codes. ... e aans 50
Table 4-8. MXM Specific Felds in _DODo sisi s sssns s sennns 54
Tahlgra- 9 Siypasl™— VEsCHI . . R e R 55
Table 4-10. Type 2 - Analog TWHDTVY ConneCtOrcvviiiiiiiiiiiiieee e iieee e an s b e 56
Table 4-11. Type 3 — External Digital Conneclors. ..., 56
Table 4-12. Type 4 = Internal Flat Panels. ... e e aan e 57
Table 5-1. MXM Header StruCtUre.o e 59
Table 5-2. MXM Output Device StrUCTUIE ..ottt s de e ain e se e i e san e s is e aan s sna e s anasas 60
Table 5-3. MXM System Cooling Capability StruCtUre..........oooiiii e 64
Table 5-4. MXM Thermal StrUCtUNE ... e e e e e e e ene e 64
Table 5-5. MXM Input POwer SEFUCLURE ... e enens 65
Table 5-6. MXM GPIO Device SIrUCIUIE ...t e e r e s ann e e nn e anns 66
Table 5-7. GPIO Pin ENtry SErUCTUIE ..ovniii ittt et et e e e e e e s e sanae e 67
Table 5-8. GPIO Fin Usage Melhods ..o s ssrsas s s sns s s sas s ssasn s s s s s s a s anans 68
Table 5-9. MXM Vendor Specific StrUCIUNE.iiiiiir e eeer e e er s e e s aannnaeaaees 69
Table 5-10. MXM Backlight Control StruCtUre ..o e e e e an e 70
Table 5-11. MXM Backlight Frequency Structure ..o, 70
Table 5-12. MXM Fan Control SIrUCHUIE. ... e anns 71
Table 5-13. MXM Fan Speed StrUCtUre ... a e 72

MXM Graphics Module Software Specification Version 3.0

1 MXM Version 3.0 Software Overview

1.1. Software Control of the MXM

Key goals of the MXM v 3.0 software standard include interoperability of compliant MXM adapters
and compliant MXM systems. An MXM adapter and its associated software (video BIOS and OS
specific drivers) should work on any MXM compliant system without re-engineering of the module
software or system software.

To achieve this, the MXM v 3.0 software standard defines a System Information Data Structure
which resides on the system, and a standard set of sottware intertaces between the MXM adapter and
MXM system (refer to the secion MXM » 3.0 Inferface Requiresents to determine the minimum
software requirements).

The MXM system information data structure defines the system configuration outside the MXM
connector, including details such as:

a Display connectors
a Cooling capability
g System power supply capabilities

This MXM system information structure may be stored either in a separate 12C ROM on the
motherboard, or in a data block within the system firmware (system BLOS, or SB1OS).

The MXM software interfaces provide methods to abstract control of functionality described 1n the
system information structure. For example, display MUX steering and the consistent enumeration of

display dewvices.

The module’s VBIOS and driver software interpret the contents of the MXM v 3.0 structure and call
the methods provided by the system to integrate the graphics module into the system. The SBIOS
does not need to parse any data about the module, nor does it need to modify its behavior based on
the particular module which 1s present. It simply stores the system information structure in binary
form and reports it to the module when requested.

In this specification, the designer of the MXM module and its software are referred to as the
“(graphics) vendor.” The designer of the system and SBIOS is referred to as the “system designer.”

Note: The MXM v 3.0 standard provides the foundation for interchangeable compliant modules. The
SBIOS must not use specific properties, such as a module’'s PCl device 1D, to alter features or
behaviors defined via the MXM standard.

MXM Graphics Module Software Specification Version 3.0

1.1.1. MXM Advantage

The MXM software standard provides a substantial benefit in terms of flexibility, maintenance, and
mnventory control. Without standardized interfaces, a unique VBIOS containing system specification
settings must be generated for every module and system combination (X*Y unigque VBIOSes). The
same may be true for the SB1OS.

Y NBIOS S

Figure 1-1. Non-MXM Software Combination Matrix lllustration
With an MXM compliant module and platform, a single VBLOS per module type and a single SBIOS

(with system information) per system type is sufficient. The graphics software combines this
nformation at runtime.

Figure 1-2. MXM Software lllustration

MXM Graphics Module Software Specification Version 3.0

1.1.2. MXM Versioning and I nteroperability

When an MXM adapter 1s installed into a system, the resulting system capabilities are the intersection
set of the MXM adapter and the base platform. Only the capabilities that are present in both will be
available. For example, if (A) the MXM module supports the High-Detinition Multimedia Interface
(HDMI™) output technology and (B) the base platform supports routing HDMI to an HDMI
connector, then that likely means that HDMI can be supported. However, if the base plattorm
(including dock) did not have an HDMI connector then no HDMI capability should be expected
regardless of the MXM module’s capabilities.

— i —

.-*##—' :---‘H""

! Ar;nxm , W MXM S

\ Adapter i s System ,

"-.. /!
h""-...__,_.":....r ___.--""l’

Figure 1-3. MXM Capabilities

Both the MXM adapter and the base platform convey software version information indicating the
highest level of the MXM v 3.0 software interface that each supports. Between the MXM v 3.0
software interfaces, backwards compatibility within a major version 1s required. For example, a 3.x
platform shall support any adapter 3.x ~ 3.0. Backwards compatibility with MXM v 2.x and 1.x is not
required. Forward compatibility is not required. Howewver, all structures and members, within later
revisions (3.v) will remain backward compatible with previous 3.x implementations.

- —_——
1-“"“"II ‘,.;"".- '.r:""-
- -~ %

r £ - N
/! f-f N YA
I ! v A
P MXM T MXMyY Y MXM
\ 3.y \ 3.0 ! 3.X 11
\ “\\ / I 7
Y - Py
. Y o= ;s
"-uh '-...‘-._-—‘___-:-'
h.""- 1-"'"-

Figure 1-4. MXM v 3.0 Software Compatibility

MXM Graphics Module Software Specification Version 3.0

1.1.3. MXM v 3.0 Interface Requirements

The following requirements are intentionally minimal. The system does not need to interpret
anything about the module capabilities, The module software must have access to certain pieces of
information and interfaces, both before driver load (typically pre-OS operation where the VBIOS is
responsible for graphics functionality, where Int15h and EFI interfaces are used) and atrer the driver
1s present (where the ACPI interfaces are in effect). Functionality must also consider the needs of
MXM adapters. They may need to operate as secondary display adapters (VGA resources are
disabled, or it is enumerated as a non-VGA device) when the VBIOS interfaces may not be available.
Both Int15h/EFI and ACPI interfaces are required. These are required even if the MXM module is
not the primary VGA device. Refer to the following sections for descriptions on the Int5h/EFI and
ACPI system methods.

O MXM p 3.0 INT 15H System BIOS Callbacks
Q MXM e 3.0 EFT Systene BIOS Callbacks
O MXM v 3.0 ACPT Methads

MXM modules may contain either legacy (non-EFT) VBIOSes or hybrid EFI/legacy VBIOSes. If
legacy operating system support is needed, the VBIOS and SBIOS must provide legacy interfaces.

The following summarizes the required software support:

d Setting Subsystem Vendor and Device ID. The SBIOS should set the module’s subsystem
information to the desired value. The specific registers to set may vary by graphics processing
unit (GPU). Consult graphics vendor-specitic documentation.

O MXM Structure for each MXM connector

Header and Checksum are required

}
> At least one Output Device substructure (if the adapter has an ourput)

e,

g Cooling capability substructure
- At least one Input Power substructure

a An interface to obtain the MXM structure from the system. Typically, this is a sofrware
interface. Less commonly, the MXM structure can be stored in a platform-resident ROM (only
one of the two approaches is needed).

» Int15h Func 0 / EFI MxmReturnSpeclLevel and Int15h Func 1 / EFI

MyxmReturnStructure

» ACPI_DSM method subfunctions MXM_FUNC_MXSS, MXM_FUNC_MXMI and
MEM_FUNC_MXMS

MXM Graphics Module Software Specification Version 3.0

Additional items may be required depending on the system features. Following examples are:
a Backlight substructure if GPU PWM backlight is used
O GPLO substrucrtures if module GPIOs are used

O Int15h Func 2 / EFI standard EF]_ EDID OVERRIDE PROTOCOL and the DDC
standard ACPI method if a non-DDC internal flat panel is used

O Int15h Func 3 / EFI MxmSelectOutputDevice and the MXMX & MXDS ACPI methods if a
Display DDC or Output MUX is used with system methods.

Unless otherwise noted, structures and methods not listed are optional and not required.

The MXM structure is static. It is created once during platform design (with the help of the
MXMedit tool) and does not change based on the current operating mode of the system. Parsing of
the MXM structure is required only by the GPU software.

Since the GPU software must be active in order to request and parse MXM information, behavior
requested by the system in the MXM system information structure will not take effect untl the
software has initialized. This includes thermal and power information. In addition, due to VBIOS
limitations full functionality may not be available until the GPU software driver loads during OS
initialization.

Compliant MXM adapters which, on boot, detect that an MXM System Information Structure is
not present must assume they are operating on a non-compliant system. The module must ensure
safe operation in a minimal configuration safe-mode. This includes booting on the CRT only, in the
lowest possible performance state with lowest possible thermal and input power burden. The use of
warning messages by the module, at POST or OS boot, to indicate mis-configuration, is strongly
encouraged.

1.2. Software Support for OEM Modules

The MXM v 3.0 standard allows for OEMs to create limited variants outside the core MXM standard
in order to add features or optimize cost. The platforms must also be capable of supporting a fully
MXM compliant module,

Such deviations from the specification, such as additional power rails, require no software support.
The use of a VBIOS image merged with the SBIOS on a single ROM on the platform does not
change the behavior of the MXM module software.

MXM Graphics Module Software Specification Version 3.0

1.3. MXM VBIOS

The VBIOS for an MXM compliant module should be stored in a ROM on the MXM v 3.0 graphics
module (in the same manner as VBIOSes are stored for desktop cards). OEM modules can instead
store the VBIOS in the SBIOS in a single non-volatile storage device on the motherboard.

Systems which are MXM compliant shall support MXM compliant modules. Any modules with a
VBIOS in on-module ROM will override the VBIOS in the system. For modules without a ROM,
during POST the VBIOS will check if 1t is running on the adapter it was built for (for example, by
checking Device 11D} and fail POST if it is not correctly matched.

The MXM VBIOS is fully VESA compliant and operates in the same fashion as non-MXM
VBIOSes. Some vendor-specific extensions may also be available. However, use of these extensions
should be avoided in order to facilitate cross-vendor module compatibility.

Reter to the MXM v 3.0 Inferface Requirements section for interface and operational requirements.

MXM Graphics Module Software Specification Version 3.0

2 The MXM System Information Structure

The MXM v 3.0 structure consists of a mandatory header structure followed by a variable number of
substructures and a mandatory checksum byte. Dara is assumed to be in little endian format,

Systems may have more than one MXM connector, so they may store more than one MXM
structure, The software interface supports specifving which connector darta is being requested for,
Data in MXM structures is specitic to a particular system configuration (for example, which
connectors are present on a particular model of the system, which MXM slots are currently stuffed,
etc.), so an SBIOS may store multiple version of the MXM structures and report them based on the
particular model and configuration of the system.

The MXM structure for a system is created through a simple editing tool (available as part of the
SDK). The MXM structure is stored in the SBIOS and is requested by and parsed by the module
software. The exact bit-level contents of the structure are generally of interest only to graphics
vendors and not system designers. Usage 1s summarized here and bit level details are provided at the
end of this specification in Chaprter 5.

2.1. MXM Header Structure

The MXM header identifies the version of the system information structure stored. Currently only
one version is available (3.0), but in the future systems may, if desired, store MXM structures for
multiple MXM module versions. If no exact match is available, the MXM software will determine the
best mapping between itself and the available structure version.

Refer to Table 5-1 for a description of the header at the beginning of the MXM structure.

2.2. MXM Output Device Structure

Fach output device structure describes a single display connector or integrated display. There will be
multiple MXM output device structures in the MXM structure, defining one output device each.

An output device shall be enumerated for each supported integrated display and display connector.
For example, each DVI output that can be routed to either an onboard connector or a docking
connector must have one dedicated outpurt device structure for each connector, In the case of a
DVI-I output connector there are separate output device structures for the analog and digital
outputs.

MXM Graphics Module Software Specification Version 3.0

Any MXM module which outputs to a display device will therefore require one or more output
device structures. Some MXM modules, such as secondary MXM modules in multd-GPU
configurations, may have no output device structures.

The ordering of output devices implies the default boot device, and the detection order. For
example, the first output device is the default boot display device. The second output device will be
the boot display device if the first 1s not attached. The third it the second is not attached, and so on.

Refer to Table 5-2 for a description of the MXM Output Device Structure.

2.2.1. Sharing Display Output or DDC/ Aux Lines Across System
Connectors

If a system requires more display outputs or DDC/Aux lines than the MXM adapter provides, it may
need to use on-system MUZXes to share signals. The display outputs and DDC/ Aux lines must be
controlled separatel. For example, a single MUX control cannot be used to switch both the output
and the DDC/Aux lines. DDC/Aux lines also cannot be shared by attempting to put them all on a
single bus without isolating them via a MUX (some external display devices can interfere with one
another it connected on a shared bus, making it impossible to communicate properly unless they are
isolated propetly.).

Note: In the MXM specification, MUX control can be done either through direct GPIO control from the
module (the signals to control the MUX are routed directly to the GPIO pins on the MXM connector,
and defined in the GPIO structures) or through a defined interface to the SBIOS (the signals to
control the MUX are handled by the platform in response to calls from the MXM graphics software
to the SBIOS).

If aignﬂl control direct from the module is used:

a Display output MUX control must be implemented as a 2:1 switch. The use of this control
must be indicated in the Output Device Structure, and the GPIO used must be described in
the GPIO Device Structure. The associated MXM connector GPIO and the state of that
GPIO in order to select the output must be provided.

O DDC/Aux line control must be implemented as a n:1 switch., Each connector will have an
associated GPIO identified in the Output Device Structure and the GPIO Device Structure.
When this GPIO is asserted, the GPU can communicate with the device.

MXM Graphics Module Software Specification Version 3.0

2.3. MXM System Cooling Capability Structure

The MXM Systermn Cooling Capability Structure defines the thermal power dissipation capability
of the MXM thermal solution contained in the system. This structure is required for all MXM
systems. The maximum performance level of the MXM module will be determined by the lowest of
its cooling capability and its current input power,

Reter to Table 5-3 for a description of the MXM Cooling Capability Structure,

2.4. MXM Thermal Structure

The MXM v 3.0 module hardware and software will regulate its own temperarure by varyving the
performance of the GPU. The optional thermal structures allow the system to specify its own
thermal requirements, There can be up to one thermal structure of each type as described.

g Maximum temperature: If the system requires the module maintain a lower maximum
temperature than the module detault, an MXM thermal structure can specity this information
in terms of GPU junction temperature. The MXM module hardware and software will ensure
the module meets the system’s stated requirements.

Q Alert signals: The TH_ALERT pin output from the module indicates a high (but not critical)
temperature, which may for example be used by the system as a signal to enable a higher
system fan speed. The system can specify the temperature at which this pin should assert.

Note: The TH_OVERT pin is a separate connector pin which indicates a critically high module
temperature (at which shutdown of the module is recommended). This temperature is determined
by the module and therefore cannot be specified by the system. If this temperature is exceeded at
any time, including power-on, the system must shut down the module immediately to prevent
damage.

Refer to Table 5-4 for a description of the MXM Thermal Structure.

2.5. MXM Input Power Structure

The MXM Input Power Structure defines the maximum continuous available input power
provided by the system for the PWR_SRC input power rail. At least one power structure is required.
An additional MXM input power structure is required for each plattorm supported power level tor
the MXM module. Typically there will be either one structure (which then applies globally) or two
(one for AC and one for battery operation).

The maximum performance level available to the MXM module will be determined by the lowest of
its cooling capability and its current input power, MXM modules generally contain a limited number
of pretested operating power states, from which the module software selects an appropriate level that

10

MXM Graphics Module Software Specification Version 3.0

1s equal to or less than the system’s current power budget. Due to the limited number of module
levels, small changes to the MXM structure information may cause substantial changes in available
performance. For example, if a module contains 30 W, 35 W and 40 W performance levels, a 35 W
system power will result in a 35 W module power state. Changing the system power to 36 W will
have no change in graphics performance, while changing it to 34 W would require the module to
reduce its power consumption to 30 W.

When first powered on, untl it can read the MXM system information, the module should operate in
a low power state. At software initialization, GPU software can read the module and system
capabilities. The GPU software initialization may fail if the lowest module P-state exceeds the current
system power budget for the module.

Reter to Table 5-5 for a description of the MXM Input Power Structure.

2.5.1. Auxiliary Power States

Some systems may require more than the two standard power states (AC and battery). For example, a
system may support a light-weight power-brick that is AC connected but cannot support operation at
the same full performance as the normal AC state. Or it may possess a higher capability docking
station that allows operation at higher states than normal AC and battery operation.

If auxiliary power states are defined, they behave like static performance limits such as those defined
for the PWR_LEVEL# signal. Thev define additional states wherein the module performance is
limited by the MXM software (through the use of voltage, frequency or other limiting mechanisms)
to ensure the maximum power consumed by the module always remains within the specified limit.

Entry into a particular power level is triggered via corresponding ACPI Notify Code. Notification
codes 0xD1~0xD5 represent PO~P4 respectively. PO is the default operating mode, representing no
auxiliary power state restriction,

Auxiliary power states are intended for system state changes such as the power supply changes as
YP ¥ £ P PP g
previously described. Use of such states requires a GPU driver to be active. Fine-grained runtime
power control should not be assumed by the system through this mechanism.

Constraint to a new power limit does not occur immediately when the notifier is issued. The
transition 1s not required to complete within any consistent nme interval, and may vary depending on
system demands or quality of service constraints. This mechanism should therefore not be used for
critical power control {(for example, for thermal control). The module can provide an optional
callback at the start and end of the power state transition if the system needs to know when the new
power limit has been met (this usage 1s outlined in the section Changing Power States.).

These limirs do not impl}f operation at a ﬁpeciﬁc power or clock level -- the module may operate at
any performance level which meets the specified power limit,

MXM Graphics Module Software Specification Version 3.0

2.5.2. Changing Power States

Many systems can provide the same level of power to the graphics module regardless of operating
conditions. In this case, no action 1s needed. However, for designs where control of module power 1s
required (such as notebooks which can supply less power to the module during battery operation),
several options are available.

Power restrictions from the system may occur due to tuning preferences by the system or due to
external events such as the system being disconnected from AC power.

[f a system supports only one module power srate, only one input power structure will exist (with the

Type set to 1).

See Section 5.5 for the bit field definitions of the Input Power Structure.

2.5.2.1. Asserting the Power State Pin (PWR_LEVEL#)

Asserting PWR_LEVEL# is required in all cases when a power state transition is due to a drop in the
available power to the module. This provides the opportunity for the module to respond
immediately, without waiting on software notifications. Asserting is not required for power state
transitions caused by an increase in available power or a decrease requested for reasons other than
power availability (such as entering a power saving operating mode).

Note: [f the PWR_LEVEL# input pin is asserted on the module, then regardless of other requirements
or SBIOS power state requests, the module must restrict power consumption to power specified in
the Input Power Structure with Type 0. As described, this hardware induced power consumption
change may be used as an interim ‘safe’ state during power level transitions, or as an end state.

If the PWR_LEVEL# pin will stay asserted for the duration while at input power level Type 0, that
Input power structure must set the notification type bit to 1. Otherwise it is expected that the pin will
only be asserted during the transition (as outlined in the examples in Section 2.5.2.3),

If the system has wo ACPI mechanisms implemented, at most two power levels can be supported
(Type 0 and Type 1). Power selection must be done entirely off the PWR_LEVEL# pin. The ACPI
type field should be set to 1 to indicate this system method.

2.5.2.2. ACPI Notifications

If input power levels () and 1 are defined, the system is assumed to support the standard ACPI
notebook power state notification (with level 0 indicating the battery power level).

[f any auxiliary power states are defined, the system is assumed to support MXM ACPI Auxiliary
Power State notifications. The MXM ACPI notifiers (one or more of OxD1-0xD5) must be
implemented.

These two notfication methods set separate thresholds, The MXM driver must select the lower of
the two if both are in effect. For example, if a system is running on battery power and the SBIOS
also requests the module limit power to Auxiliary Power Level 1 (Input Power Structure Type 0x9),
the lower of the two limits applies.

11

12

MXM Graphics Module Software Specification Version 3.0

2.5.2.3. Examples

The interaction of these mechanisms offers a range of options to the system, as illustrared.

. Example 1: Basic power supply transitions (AC and battery) only
» Setup requirements:
a) PWR_LEVEL# should be connected to power supply or similar output to

assert while running on battery.

b) MXM input power structure: battery level power entry (entry with Type 0)
should set the Hardware Notification field to “1”.

c) No callbacks are required.

- Runtime operation: on switching to battery power:

a) System asserts PWR_LEVEL# pin on transition to battery power,

b) Adapter restricts power consumption to Input power structure of Type ()
(battery level).

c) SBIOS issues standard ACPI power source notification (battery mode)

d) GPU driver receives request and may perform additional module power
state adjustments. Power consumption remains restricted to the battery
power level.

e Runtime operation: on switching to full power:

a) System de-asserts PWR_LEVEL# pin on transition to AC power.

b) MXM adapter is free to resume operation at the AC power level.

c) SBIOS issues standard ACPI power source notification (AC mode)

d) Driver receives request and may perform additional module power state

adjustments.

Example 2: Additional software controlled power states

Some systems may use additional power states selected by the SBIOS using the MXM
auxiliary power notifications.

-

a)

b)

- Setup requirements:

MXM input power structure: power state Type U (only) way set the
Notification Type field to ‘1" (as appropriate for system behavior).

PWR_LEVEL# must be connected to a power supply signal or under
software control (as explained).

If the system supports an auxiliary power state or PWR_LEVEL# will not
stay asserted while in power state Type 0, the SB1OS must support the
MXM_FUNC_MXCB post-power state change callback {and should
indicate this during the initialization time MXM_FUNC_MXCB support
check performed by the MXM driver).

MXM Graphics Module Software Specification Version 3.0

Runtime operation:

)
b)

c)

d)

e)

System asserts PWR_LEVEL# pin if required (see Section 2.5.2.1)

It PWR_LEVEL# asserts, adapter restricts power consumption to input
power structure of Type 0.

SBIOS issues ACPI notfication (standard ACPI power source notification,
or MXM auxiliary power state notification) for desired state.

Driver receives request and performs any needed module power state
changes. The new limit is the min based on the current power source and
the current auxiliary power state. On completion, driver issues
MXM_FUNC_MXCB post-power state change callback.

If PWR_LEVEL# was asserted, and will be de-asserted for this power state,
SBIOS must wait till MXM_FUNC_MXCB callback before de-asserting.

Example 3: Systems requiring per-module power state control

If a system wishes to control the power level of multiple MXM modules, it can use the same
mechanism as previously described as long as the same power state will be set across all
modules. However, if the system wishes to set different modules to different power levels,
the SBIOS must support the pre-power state change MXM_FUNC_MXCB callback. This 1s
to ensure proper communication of desired power levels even in cases such as WMI
notifiers (which, unlike direct notifiers, are not module specific). If this callback is not
supported, it is assumed by the module software that the same power state is desired tor all

modules.

»

W

Setup requirements:

a)

b)

c)

d)

MXM input power structure: power state Tvpe) {only) may ser the
Notification Type field to ‘1" (as appropriate for system behavior).

PWR_LEVEL# must be connected to a power supply signal or under
software control (as futher explained).

It the system supports an auxiliary power state or PWR_LEVEL# will not
stay asserted while in power state Type U, the SBIOS must support the
MXM_FUNC_MXCB post-power state change callback (and should
indicate this during the initialization time MXM_FUNC_MXCB support
check performed by the MXM driver).

SBIOS should support the MXM_FUNC_MXCB pre-power state change

callback (and should indicate this during the inttialization time
MXM_FUNC_MXCB check).

Runtime requirements:

a)

b)

System asserts PWR_LEVEL# pin on all modules if required (see Section
2521).

It PWR_LEVEL# asserts, each adapter restricts power consumption to input
power structure of Type (.

SBIOS issues ACPI notification (standard ACPI power source notification,
or MXM auxiliary power state notification) for desired state.

13

MXM Graphics Module Software Specification Version 3.0

d) Driver receives request and may call SBIOS via MXM_FUNC_MXCB pre
power state change callback to verify desired power level on each GPU.

e) Driver receives request and performs any needed module power state
changes. The new limit is the min based on the current power source and

the current auxiliary power state. On completion, driver issues
MXM_FUNC_MXCB post-power state change callback.

f It PWR_LEVEL# was asserted, and will be de-asserted for this power state
an SBIOS must wait until MXM_FUNC_MXCB callback before de-
asserting,

Refer to the section on the MXM_FUNC MXCB callback tunction for details on the MXM
notfication.

14

Note: With these mechanisms the system is imposing a power limit on the module. This may not
correspond to a change to a specific GPU clock level since power may be limited in other ways. Or
since the module is free to select power levels at or below the current limit at any time, it may
already be operating at a sufficiently low power level so no clock changes or other changes will be
visible. The MXM_FUNC_MXCB callback calls must still be performed by the module software in
order to confirm that sufficient action has been taken.

Power state transitions may occur for reasons other than the current system request. A system
waiting for a requested transition to complete should not assume that the next callback received is
a response to its requested action. It should specifically check that the specified P-state is at or
below the system requested level (before proceeding, for example, with de-asserting the
PWR_LEVEL# pin).

2.6. MXM GPIO Device Structure and GPIO Pin Entry
Structure

This structure applies to standard module-provided GPIOs, provided on the MXM connector. The
structure 1s optional, and it 1s only needed if the system uses one or more MXM module GPI1Os.
GPLOs are described with a list of GPIO Device Structures and GPIO Pin Entry Structures.
Fach GPIO device description is followed by one or more GPIO pin description for pins on that
device.

An MXM GPIO Device Structure is used to define whether the MXM Physical & Logical GP1O
pins are attached to the pre-detined module GPIOs, or to OEM defined GPIOs,

The MXM GPIO Pin Entry Stuctures tollow the GPLIO Device Structure and enumerate the
function and usage of all the MXM GPIO pins used.

Refer to Table 5-6 a description of the MXM GPIO Device Structure and Table 5-7 for the MXM
Pin Entry Structure.

MXM Graphics Module Software Specification Version 3.0

The Logical pin number referenced in other data structures such as the Output Device Structure 1s
determined by numbering the GPI1Os beginning with 0" for the first direct GP1O pin on the module
connector up to the total number of direct GPIOs,

Refer to the MXM Version 3.0 Grapbics Modute Thermal Electromechanical Spectfication for the GPIO
function hardware definitions.

2.7. MXM Vendor Specific Structure

This is an optonal GPU vendor specific strucrure (V58). The contents of the structure are defined
by the vendor, where each structure is tagged to indicate to which vendor it applies. There may be
multiple structures, for example, with one V35 per supported vendor. Contact the GPU vendor for
any additonal details on VSS requirements or contents.

Reter to Table 5-9 for a description of the general format of the MXM Vendor Specific Structure.

Specific details of any VSS data will be provided separately in vendor specific documentation.

2.8. MXM Backlight Control Structure

This is an optional field that describes the settings for the LCD panel integrated into the chassis. If
no PWM or [12C based LLCD inverter is supported then the field is not required.

The table provides only the hardware information the GPU softtware requires in order to set a
requested brightness. The interface by which brightness requests are communicated (for example, for
brightness control hotkeys) 1s a separate topic outside the scope of the MXM standard. The
Windows Vista operating system, for example, supports ACPI 3.0 standard ACPI notifiers and
methods for this purpose. The OS provided control software in turn calls the GPU software to set
the requested brightness value.

Reter to Table 5-10 for a description of the MXM Backlight Control Structure.

2.9. MXM Fan Control Structure and Fan Speed Structure

This optional structure applies to an MXM module-controlled system fan, if present. The MXM
module provides a PWNM outpurt for this purpose,

Fan control is described with a Fan Control Structure and one or more Fan Speed Structures, The
Fan Control Structure describes the physical properties of the fan. The Fan Speed Structures specify
temperature thresholds and fan speeds to describe the expected behavior the module should
implement.

Refer to Table 5-11 for a description of the MXM Fan Control Structure and Table 5-12 for the
MXM Fan Speed Structure.

15

16

MXM Graphics Module Software Specification Version 3.0

2.10.MXM Checksum Byte

The MXM checksum byte 1s the two’s complement of the 8-bit sum of the entire MXM v 3.0
structure (including header but not the checksum itself) and is the last byte in the MXM table.

MXM Graphics Module Software Specification Version 3.0

3 Core MXM System Interfaces

All MXM systems must provide access to the MXM System Information Structure. This can be done
cither via software Interfaces or through a ROM on the motherboard that is directly accessible by the
MXM module,

In most cases the same software functionality is mirrored in an Int15h, EF1, and ACPI version. The
ACPI version is required, as the Intl5h version. The EFI version is required for EFI compliant
SBIOSes only.

Chapter 4 discusses additional system intertaces which may be needed depending on system design
choices.

3.1. Required MXM Int15h System Bl OS Callbacks

A set of SBIOS callback functions has been defined in order to allow the communication of system
information between the VBIOS and the SBIOS.

[f the SBIOS does not support a described callback, then when called it should return with a value
other than (005Fh in AX,

Note: In some instances below, one of the parameters is the “Adapter 1D, used to differentiate which
MXM module is being referenced. This is a 16-bit value constructed as follows from the PCl bus

information:

Bits [15:8] Bus

Bits [7:3] Device
Bits [2:0] Function

An adapter 1D of '0’ is acceptable when referring to the primary GPU in the system (that is, the one
whose VBIOS is POSTed at system boot).

The ability to access secondary adapter information without a driver is primarily needed to enable
test applications.

18

MXM Graphics Module Software Specification Version 3.0

3.1.1. Function 0 — Return Specification Support Level

This is a required function that allows the VBIOS to get information from the SBIOS about the level

of the MXM software specification that the system supports, and the support information for
individual functions.

Entry:
AX = 5F80h
BL = 00h
BH = FFh
EBX[16:31] = Adapter |D (see above)

CX = Revision of the MxXM software specification that is supported by the MXM
module

Format is binary coded decimal, for example: 0O030h = 2.0, etc.
Return:

AX = 005Fh to indicate that the system bios supports this function

BL = Revision of the MXM software specification that is supported by the
system

Format is binary coded decimal, for example: 30h = 3.0, etc.
CX = MXM functions supported

Bit 0 = 1

Bit 1 = 1if Function 1 is supported, 0 if not supported

Bit 2 = 1 if Function 2 is supported, 0 if not supported

Bit 3 = 1 if Function 3 is supported, 0 if not supported

Bit 4 = 1 if Function 4 is supported, 0 if not supported

Bit 7 = 1 if Function 7 is supported, 0 if not supported

Bit 8 = 1 if Function 8 is supported, 0 if not supported

Bit @ = 1 if Function 9 is supported, 0 if not supported

MXM Graphics Module Software Specification Version 3.0

3.1.2. Function 1 — Return a Pointer to the MXM Structure

This is a required funcrion that will return a pointer to the MXM structure, which is stored in the

SBIOS ROM area or some other memory location which is accessible in real mode during video
POST.

Entry:
AX = 5F80h
BL = 01h
BH = FFh
EBX[16:31] = Adapter |D (see above)
CX = Identifier for the data block to return

To obtain the MXM information structure, use CL to specify the revision
of the MXM software specification that is supported by the MXM module.
Format is binary coded decimal, for example: 0020k = 2.0, etc.

To obtain an additional vendor specific data block, use CL to specify an
identifier in the range 0x80-0x8F. If the system BlIOS does not contain
such a data block, it should return an error in AX. Graphics vendors should
not assume a specific assignment within this range — the SBlIOS can store
the data for different vendors in any order in the 0x80-0x8F identifier
range.

Details for any such OEM or graphics vendor specific data blocks are
outside the scope of this document.

Return:
AX = 005Fh to indicate that the system bios supports this function
BX = Vendor |D of data block if CX = 0x80-0x8F, else 0
ES:DI = Pointer to the MXM structure in real mode memory (< 1MB)

3.2. Required MXM EFI System BIOS Callbacks

A set of SBIOS callback functions has been defined in order to allow the communication of system
information between the VBIOS and the systems supporting the Extensible Firmware Interface

(EFT).
Refer to Section 1.1.3 (MXM » 3.0 Interface Reguirenvents) for a summary of interface and operational
FECUITCITICLS.

19

20

MXM Graphics Module Software Specification Version 3.0

3.2.1. EFI Interface

The GUID detined for the EFI interface,

#define MXM3I_EFI_GUID {4EASDAFE-E&6F6-410b-8037-0F%8B5968B65}

The interface itself 1s as follows:

typedef struct _MXMI_EFI_INTERFACE |

MxXM_BETUEN_SPEC_LEVEL MxmEeturnSpecLevel;
MxXM EETUERN STRUCTUERR MxmEeturnstructure;
MXM_SELECT_OQUTPUT_DEVICE MxmSelectOutputDevice;
MXM CHECEKE CUTFUT DEVICE MxmCheckOutputlDevice;

I MXM3_FEFI_PROTOCOL;

Mote: ControllerHandle and ChildHandle

In some instances below, one of the parameters is the handle ‘ControllerHandle’, used to
differentiate which MXM module is being referenced. This is the EFl handle for the PCl device.
'ChildHandle,” where used, is the output device (the display).

usstructSize
usStructSize is set to the size of the supplied buffer by the caller, and on return should contain the

actual size of the structure. If the structure is larger than the buffer, EFl_ BUFFER_TOQ SMALL
should be returned as the status of the call.

Any unsupported function should return a status of EFI_UNSUPPORTED. Bad input parameters
such as an invalid handle should return EFI_INVALID_PARAMETER. Passing too small a buffer
should return EFI_BUFFER. TOO _SMAILIL. A successful call should return EFI_SUCCESS.

MXM Graphics Module Software Specification Version 3.0

3.2.2. MxmReturnSpeclLevel — Return Specification Support Level

Caller provides pointer to location, which on call contains the module requested specification

revision level, and which on exit, will contain the platform’s preferred revision level and bit field of
supported functions,

typedef EFI_STATUS (EFIAPI *MXM_RETURN_SPEC_LEVEL) |
IN struct _MXM3_EFI_INTERFACE *This,
IM EFI_HANDLE ControllerHandls,
INOUT UCHAR16 usStructSize,
INOUT UCHARE *pucRevisionLevel,
ouT UINTHN *puSupportFuncs
)i

Where the integer value passed in uSupportFuncs indicates supported functions:
Bit 0 = "17 (this method is required)
Bit 1 = '1" (MxmReturnStucture is also required)
Bit 2 = "1 if MxmSelectOutputDevice is supported, ‘0" If not
Bit 3 = 1" if MxmCheckOutputDevice is supported, ‘0’ if not

Other parameters follow the definitions in the Int15h interface, function 0.

3.2.3. MxmRBeturnStructure — Return Pointer to MXM Structure

Caller provides expected MXM interface revision level and a pointer which, on return will contain
the MXM structure.

typedef EFI_STATUS (EFIAPI *MXM_EETURN_STRUCTURE} (
IN struct _MxXM3 EFI.INTERFACE . *#This,

IN EFI_HANDLE ControllerHandle,
INQUT UCHARlE usStructSize,

IN UCHARl1GE usDataBlockID,

ouUT CHARS *pMxmStruct

) ;
Input parameters follow the definitions in the Int15h interface, function 1.

3.3. Required MXM ACPI Methods

Where supported, methods within the ACPI namespace of the graphics adapter provide access to
platform specific MXM functionality known by the SBIOS, Refer to implementation specific
documentation on ACPI video extensions (Advanced Configuration and Power Interface Specification
Revision 3.0a3) for additional details.

Refer to the MXM v 3.0 Interface Requirements for interface and operational requirements.

21

MXM Graphics Module Software Specification Version 3.0

Figure 3-1 1s an overview of the altered and new methods in the namespace (affected methods are

bold type). (This includes oprional methods described in Chapter 4.)

5B
|= BECI
| = WMI1 ff WMI Device
| — WM ff WMI Method wrapper
| = VGA // Define the VGA controller in the namespace

|- _DOS // Method to control display cutput switching

|- _DOD // Method to retrieve info on child output devices

| = _ROM /f Method to retrieve the ROM image for this dewvice

|- _DSM // Methed for probing MHM Support and calling MXM

|- CRT /4 Child device CRT
|- _ADE J/ Hardware ID for this device
|- _DCs J// Get current hardware status
| = _DGS !/ Query desired hardware active \ inactive state
|- _Ds8 // Set hardware active '\ inactive state
| = MEMX // Methed for selecting display data channel
| - MXDS // Method for selecting display output

| = HDMI /7 Child device HDMI
| - _ADR // Hardware ID for this device
|- _DCS ff Get current hardware status
|- _DiGEs /f Query desired hardware active \ ilnactive state
|- _DsS§ /4 Set hardware active % inactiwve state
| - BXMX // Methed for selecting display data channel
| - MXDS // Method for selecting display output

|- L&D 4 Child device LCD
|- _ADR J// Hardware ID for this device
|- _DDC J/ Get EDID information from the menitor device
|I— _DC5 // Get current hardware status
|= _DGES Ff Query desired hardware actiwve \ inactive state
| - SRSE /¢ Set hardware active ' inactive state
|- _BCL /7 Brightness control levels
|- _BCM // Brightness control method

|- TV £ Child Device TV
| = _ADR /4 Hardware ID for this device
|- _DDC S/ Get EDID infermation from the menitor device
|- _DCs /4 Get current hardware status
|- _DG3 // Query desired hardware active % dnactive state
|- _Ds8 // Set hardware actiwve %\ inactive state

Figure 3-1. Namespace with MXM Methods Example

MXM Graphics Module Software Specification Version 3.0

3.3.1. Accessing MXM ACPI Methods via WMI

In order to allow access to the new MXM data from user mode and kernel software across
Windows*N'T O/Ses the following headers shall be included in the graphics adapter namespace and
any other devices that contain MXM methods in order to facilitate access via WMI. The GUID for
WMI MXMX methods is:

1FOCB5C3C-9CAE-4EBD-B577-931 EA32A2CC0}

The WMI GUIDs to use tor Notify events are the same as those listed under Section 4.3.7.5
(MXM_FUNC_EVENTLIST).

WMI parameter Argl 1s used ro specify which GPU’s method is being called. The value of Argl is
determined by calculating (0x100 + PCle bus number for the GPU). Any related methods calling the
motherboard chipset’s integrated graphics should use Argl = Ox10,

For more details on using WMI to access ACPI methods refer to:
http:/ /www.microsoft.com/whdc/svstem/pnppwr/wmi/wmi-acpi.mspx.

[n addition to the MXM-specitic items and events, several events which are typically OS-supported
but are key to MXM operation are included in the following ASL code and in the compiled MOF. If
an OS does not support some of these events, they may need to be included under WMI1 in order to
enable MXM sottware. Including them here also enables application level testing and verification.

The GUIDs for these other events are also available under the section on
MXM_FUNC_EVENTLIST.

Examples for this code are also provided in the SDK.
Device (WMIL) // placed within PCI Bus scope

Hame (_HID, "pnpldcld™) /5 pnplcld iz the ID assigned to WMI mapper
Name {_UID, "MMMZ"} // use a unique UID for each instance

£ Descripbtion of data and eveanls supported

Mame (_WDG, Bufferi} |
A8 Methods GUID (FECBLRCIC-9CAE-debd-BRIT-931EAIZAZCC0}
Dm3c, OubSC, OxCE, OxFée, OxAR, =250, Oxbd, Oxde, OxBES, Ox77, O0x93, Ox1E;
Dxad, O=x2A, O0x2C, OxC0,

Dxal, Ox58, 7 Obdject ID “"MXE" = method “WMHMXEY
1, A4 Instance Count
002, A4 Flagas (WHMIACPI_REGELAG _METHOD)

J5OMOE data {05201221-DEee-114dl-BZFO0-00A0C9062510]

Dx2l, 0OxlZ, 0x20, 0Ox05, 0Ox66, O0xd5, Oxdl, Oxl1l, Oxb2, OxfD,
0x00, Oxald, Oxc%, Ox0&, OIx29, O0x10,

O0x58, OxdD, J/ Object ID "XM"

1, F/ Instance Count = 1

Dx00, /S Flags

f¢4 DISFLAY_HOTEEY, ACPI_NOTIFY_PANEL_SWITCH GUID

S/ Wotify event B0 {fixed) - Hot-Key, use _DG5, _DCS . eto.

J/ GUID (EJGBDEGZ2-EETS-4BF4-ASB3I-BZ3EGS9ABFESL)

IxeZ, OXDE, OxeB, O0xED, 0x75, 0O#EE, OxF4, 0xd8, OxAS, Ox83, (0xBZ2, (0x3E, 0Oxed, OxAB,
OxFRE, 091,
=80, Ox00, Ox01, OxDE,

A DISPLAY_HOTplug, ACPI_NOTIFY _DEVICE_HOTPLUG

O Notify event 81 (fixed) - Hot-Plug, query _DCS

FGUID {FADEEDOF=0CSF=d5El=AR=2E=0=88=2B=4F=0C=B]

DmdF, OxBEDR, OxbDe, Ox3a, 0x5F, O0x0C, O=ED, Oxde6, OxAE, dx2E, 0=04, Ox96, Ox2B, Ox4F,
OxD, OxBC,

23

MXM Graphics Module Software Specification Version 3.0

0x8l, Ox00, Ox01l, Ox08,

Af BRIGHTNESS_INC, ACFI_NOTIFY_ INC_BRIGHTHNESS_ HOTHERY

Hf Hotify event B6 (fixed) - Backlight Increase

ff GUID {lE515311-3E75-4205-BOSE-EBEL7E3FF41F}

0x11, 0Ox23, 0Ox51, 0Ox1E, 0x75, O0x3E, 0Ox08, Ox42, 0OxBO, Ox5E, OxEE, 0OxEl, O=7E, Ox3F,
OxF4, OxlF,

O=xB6&, O0x00, Ox01, Ox08,

// BRIGHTHMESS_DEC, ACPI_MCTIFY _DEC_BRICGHTHESS_HOTEEY

/Y Hotify ewent B7 (fixed) - Backlight Decrease

/4 GUID {37F85341-4418-4F24-8533-38FFCT7295542}

0x41, 0x53, OxFB, O0x37, Oxl18, 0Ox44, 0Ox24, 0x4F, OxB5, O0x33, 0Ox38, (xFF, OxC7, 0Ox29,
=55, Dmdaz2,

0x87, 0x00, 0x01, Ox0B,

{f RCPI_NOTIFY_POWER_LEVEL_DI1

f7 Wobify event Dl - Power State BO

SOOGUID (9320309 5-DASF-460a0-BElC-DEZFIFTDOGAF }

fu85, 0x30, Ox2e, Ox93, dx5F, 0xDA, OxAQ, Dmde, Ox8E, Ox1C, OxDE, Jx2F, O0x1F, Ox70,
Dxeh, DHAER,

0x0l, 0x00, Ox01, Ox08,

A ARCPI_MOTIFY_POWER_LEVEL_D2

/f Notify event D2 - Power State P1

/f GUID [BES0TO0G-DE03-4714-3AE2-90BARRATARODG)

0x06, Ox70, Ox%0, OxBE, 0Ox03, 0OxD&, Oxl4, Ox47, Ox%A, OxE2, 0x9D, OxBA, OxEB9, OxI7,
DxA8, Ox05,

0xD2, Ox00, Ox01, 0Ox08,

// BCPI_MOTIFY_POWER_LEVEL_D3

Jf Notify ewvent D3 - Fower State B2

{f GUID {21D355E1-498D-4elf-AE01-0SCEFBCOOS3F}

OxE1l, 0x55, OxD3, OxZ1, Ox8D, 0=x49, O0x1F, Ox4C, OxAE, Ox01, Ox03, OxCE, OxF3, OxDD,
Dx05, Dx3F,

0=xD3, 0x00, 0x01, OxOCH,

S/ BCPI_MWOTIFY_POWER_LEVEL_D4

S5 Hobify event 04 - Fower State P3

ff GUID {EDBCEDFL-BECO-420-A3C0-322B1D3TCIAR}

IxFl, OIxEDR, OxBZ, OxED, (0xC9%, O0xBB, O=0E, Oxd42, OxAald, OxC0, JOx32, Ox2B, x1D, Ox37,
OxC3d, OxAR,

Jmid, 000, Ox01, Ox08,

ff BOPI_NOTIFY_POWER_LEVEL_DS
A Hotify ewent D5 - Fower State P4
S BUID i 37TEBJEL-1ZDE-41fb-ALSe-0F0BEZEBAEAS)
0xBE1, OxB4, Ox7E, Ox37,00xDE, 0x12, O0xEB; Ox4l, OxAD, 0x9s, 0x0F, 0x08, 0x52, OxEB,
DxAG, OxBY,
0xD5, 0x00, 0xD1l, OxO08
[}

/Y Method Executicn
S/OMEM Native Methods are called wia WHME Index
S/ ONLY include the methods that you actually hawve !
Method (WMMX, 3)
{
CreateDWordPield{f&rg2, 0, FUNHD) S Gebt the functlion name
If {LEqual {FUNC, (Ox4D53445F})1} ff " _DsM®
{
I1f (LigreaterBgual (Sizeldf (ArgZl, 28)1)
1
CreateFieldi{hrg2, 32, 128, MUID)
CreatelWeordPield{Argl, 20, REVI)
CreatebWeordField(Argld, 24; SFHC)
CreatebWordPisld{Argd, 25; ARGD)
If (LEgual {And(Argl, OxFF)), DGPU_SCOPE.GEUS())) |
Return {(DGEFU_SCOPE. _DSM(MUID, REVI, SFNC, ARGD))
}
If {LEgqual {AndiArgl, OxFF}}, DGPUZ_SCOFE.GBUS{}}} |

MXM Graphics Module Software Specification Version 3.0

Return {DGFUZ_SCOFE._DSM (MUID, REVI, SFNC, ARGD))

}

!
Eeturn (0)

J/ Compiled form of the associated MOF declaration

Hame {WQXM, Bufferc{) |

Dxdf, OxdF, 0x4D, 0x42, 0x01, 0x00, 0x00, 0x00, 0xCC, 0x05, 0x00, 0x00, 0xFC, 0x30, 0x00, 0x00,
Oxdd, 0xS3, 0x00, 0x01, Ox1A, Ox7D, O0xDA, Ox54, 0x18, 0=xD2, 0x97, 0x00, 0x01, 0x06, Ox18, 0x4Z,
0x1d, 0x1%, Ox10, 0x80, OXEe, OxED, Oxd2, Ox0d, 0x92, 0x4 3, OxAd, Ox30, 030, 0x28, Ox0B, %20,
DuBa, 0x90, 0B, Obx26, 0x2 6, 0xd D, 0x04, Oxdd, OxBC, 0«08, OB, Ox2%, 0«C0, 0x2d , OxEE, OxFA,
DuET, 087, dx28, 0x090, 0% 0E, Ox25, =04, 0xd2, 0x%12, 005, 0x98, 0x1 7, 0xB0, O0x58, 080, 0x6l,
Dx0l, OxBe, Ox05, 0x98, 0xle, OxED, 0x18, 0x%2, 0x48, 0x03, 0xA7T, 0x04, 0x94, 002, 021, 0xnl,
D02, Ox%d, Ox0B,; bxFO; Ox20, 0x40, 0x3B; 0xa2, 0x24, 0x0B; OxB0, Ox0C, 0x23, 0x02,; O0xBF, 0x82,
Dxal, 0xT1l, 0xad, (xEC, Dx30, 0x2C, 0x13, 0x4C, OxB3, =38, DxAC, 0xB2, 0x91,; 0xah, O0xal, 0xDC,;
DxdE, Ox05, OxCE, 0x15, 0x20, 0xd T, 0x80, 0x78, 0x54, 0xal, 0x34, 0x07, 0xd5, 0xED, Oxd2, 0x63,
Duda, OxeS, OuEF, bud2, DA, OxEE, Jud2, 0uS3, Oxdn, 0xe0, DulF7, 0x03, 0x3d, Ox0A, OxD0, OxzZ4,
D, OxAl, OO0, 0B85, 0x02, Oxhl, dxol, OucE, Ox1%, 0x84, DueC, Oxdl, OxOB, OxAZ, Oxdl, Ox0l,
Oxlo, OxS1l, 0x34, 0x82, 0xB3, 0xA8, 0x78, 0x4E, Oxd42, 0x09, 0xel, Oxel, Ox02, 0xC2, 0x33, 0x66,
Dued, OxTH, Oxd2, 0x0C, OxE2, Ox1%, 0x86, 0x20, OxEZ, Oxd6, Dx38, 0x9s, 0uFa, 0x07, Oxdl, OxE,
Dx2B, 0xl18, 037, 0xEBB, Ox34, OxlA, 0x04, Ox58, 0x13, 021, OxBB, Ox4 7, 0x73, 0xCE, 0xE80, Ox05,
0x%0, 0x3F, 0x37, 0xB1, 0x1C, Ox0D, 0x69, OxD4, 0x39, 0x68, Ox32, 0x3C, 0x86, 0x35, OxED, Ox3F,
0xC0, OxAT, 0x00, DxBC, 0x6E, 0x40, 0x40, OxFF, 0xED, 0x99, 020, 0x38, 0xD4, 0x10, 0x30, OxEA,
0x70,0x27,0x70, 0x5E, Ox47, 0xC2, Ox20, Ox8E, OxE8, 0xBE, OxBl, 0xE3, 0x3A, 0x99, 0x33, 0x2E,
0x55,0x80, 0xD9, 0x03, Ox80, Ox06, 0x97, OxED, 0xB4, 0xCF, 0x24, 0xF4, 0x7E, 0xCJ, 0xF2, 0xF4,
0x3C, 0x36,0x36, 0x08, OxD4, 0xCE, OxFC, OxPF, Ox87, 0xF6, Ox20, 0x4F, Ox2E, OxG6, OxCE, OxGT,
OxBl,0xC3, 0x62, 0x62, 0x21, OxE4, 0x49, 0x80,0x07, 008, Ox1C, 0x00, 0x1E, 0x0D, 0x22, 0xBC,
Ox19,0x78, 0XBE, 0x26, 0x18, 0x14, 0x47, 0x4E, OxC6, 0x83, Ox12, 0x73, 0x3E, 0x20, 0x73, 0x09,
OxFl, Ox10,0xT0, 0=x0C, Ox31, 0x82, 0x9E, 0x51, 0xD1, 0xC8, Ox9A, OxE8, 0xCF, O0x00, 0x1E, OxB7T,
Dx65,0x81,0x50, 0x02, 0x03, OxFE, 0xDC, 0xF0, Ox0E, Ox61, 0x58, 0xDC, 0x63, 0x02, 0xFE, 0x7C,
OxGl,0xB1,0x83, 0x42, 0xC1, OxFA, 0xAE, 0x10, 0xF3, 0x79, 0xEQ, Ox38, 0x0F, 0=D8, 0xC2, Ox27,
Dxdd, OxB0, Ox0F, 0xCO9, DxA, OxB8]1, 0x37, 0x48, OXFE, 0xD6, OxBF, Ox00, 0x04, 078, 0xB5, OxC1,
Dx04, 0x96, Ox07, bx8C, Ux1E, OxAS, 0xFD, Ox0A, Ox40, 0x08, OxFE, 0x62, 0xF1, 0x14, O0xF0, Ox3A,
Dx10, 0xEL1, IS8, bx60, 0xBa, Ox1C, %18, 0x1a, Ox9E, 0%1F, O0x1C, OxA2, 0x47, &30, 0x97,0xF0,
Dxd7,0x13, 0xES, 0214, 0x0E, OxCT, 0x47, 0x0E, Ox23, 0x84, Dx7F, OxD2, 0x7E, 0xF2, 0xB0, 0xEd,
Ox3B, Oxa0, Oxné, 0xFd, 0xle, OxF0, 0XFE, OXEQ, Ox11, 0xa0, Dx04, Oxd8, 0x38, 0x 90, Oxal, OxZZ,
0x%F, OxdE, O0x40, 0xFLH, OXFF, 0%3F, 0x0D, Ox00, OxRe, 0xBE, DR1C, OxFd, OED, 0xE4, Ox2%, Ox22,
Db, Ox%d, Ou20, 0x2F, Dxll, OxaF, 0x25, 0xdl, Ox22, 0xBC, Dx07, Ox 30, 0x99, 0x3C, Ox9D, =58,
DG, Ox2%, 0x4S, 0x18, 0x51, 0xE8E, 0x3E, 0x50, 0x98, 0x17, 0x83, 0xF7, 0x13, 0xd3, Ox0G, Ox09,
DxEB OxT%, OnCd, bxbh, D13, 0x30, 0x08; 0xed, 0x37, 0294, DuAT Ox1 3, 0xla, OxF2; Oxal, dxzl,;
Omil, OxAT, 9x13, 0x80, Ox02, 0xfP, {xFF; OxD3, Ox0%, 0xEC, DAL, OxXAT, Ox13, OxP4, 0xT0, 0x70,
OmCh, OxCl, OxZ0, bxlF, Ox®d, OxdP, 0x10,; 0x3E, Ox07 , 0x9C, OB o, Ox3F, O0x27, 0wl 8, 0xS1l, OxCT,
Oxl3, 0xDd, OxES, 0xC], 0xC7, 0xl1 3, duTh, Ox3E, 0x33, 0xEE, OuC7, 0x00, 0x9F, Ox4E, Ox30, IxF7T,
Dx04, 0x5F, Ox4E, 0xC0, Dx36, Ox14, Ox18, 0xC7, 0x13, 0xF0,0x10, 0x5D, O0x70, 0xC7, 0xd 3, 0x30,
0x0C, Ox06, QxCe, O0xE9, Oxld, 0xT78, 080, 0xlT, 0xT7, 0x0C, OxF0, 0x10,0xF&, 0x00, 0x1E, On37T,
Ox4E, OxCF, Ox4A, 0x27, 0x85, 0x3C, 0x89, 0xF0, 0x41, 0x61, Ox0E, 0x2C, 0xCO, OxELl, OxFF, 0x7F,
Ox60,0x01, 0x42, 0xDD, 0x0F, Ox4E, 0xF9, 0x79, 0xC5, 0x17, Ox16, 0x23, OxBF, OxA3, 0xBC, OxAS,
OxC4,0x328, 0xFO, 0x77, 0x95, 0x28, 0x1E, OxC1, 0x9E, 0x4A, OxBE4, Ox60, 0x0F, 0x2C, 0x3E, OxAER,
OxF8,0xB8, Ox66, 0xBC, Ox58, 0x87, O0xF1l, OxEA, Ox62, 0xA4, Ox28, 0x31, 0xE3, OxBD, OxAC, 0x19,
DxEZ2,0x81, 0x05, 0x60, 0xC3, OxFF, 0xFF, 0xC0, Ox02, 0x4C, OxAE, 0x41, 0x0F, Ox2C, 0xC0, 0x7E,
Ox34,0xEC, 0xC0, 0x02, 0x4C, 0x07, 0xC3, Ox0E, 0x2C, 0x80, 0xCB, OxFF, 0xFF, 0x81, 0x05, 0x30,
Dx75, 0x20, 0xFS, 0x5D, 0x25, OxCe, 0x33, 0x29, 0x43, 0x78, 0x5L, 0x79, 0x4F, OxT3, 0x81, 0x2D0,
OxhF, Ox0D, O0xTC, 0x30, 0xT8, 0x5E, 0x33, 0xdf, OxAd, =07, Oxle, Ox5F, 0x50, 0x0C, Ox1l, 0x34,
Oxi2, 0xEC, OxAE, 0x0F, 0x2C, 0x0F, 0x0E, OxCe, 0xE9, 0xF1, OxC0O, Ox02, 0xBO, OxEL, OxFF, Ox7F,
Daed, 0x0l, dx2a, 0x57, 0xAl, 0x07, Oxla, Oxed, 0x3C, 0x18, 07, Oxal, 0«01, Oxae, OxE3, 0xal,
0x07,0xle, OxC0D, 0<EL, OXFF, OxXFF, 0xCO, 0406, OXBE, 0xBA, DxAZ, 0% 30, OxR1l, 0xFR, OK9E, Ox1Z,
DuES, Ox15, OxCS, bxBT, 0x15, OxE83, 0xF8, 0xBe, OxEZ, 0x83, Dx9a&, OxCr, 0x04, 0x0F, OxAC, 0x04,
Outd, Ox0T, 0x56, 0xd3, 0x3C, OxBS, 0xln, OxEL, Ox0%, 0x20, 0x78, 0xBE, 0x13, 0009, Oxlc, OxEL,
OxCl, OxC5, 0x07, bx16, 0xB0, 0x0D, 0xFF,; OxFF, Ox03, 0x0B; 0x30, 0xB%, 0x09, 0x3C, OxXBO, Ax00,
OxEI 0D, OxBO, (=03, 0x0E, Ox30, 0x10, Ox0C, Ox36, 0xB0, 0xdd, Ox2E, 0xFF, 0xFF, Ox07, dxla,
0wCO, OxDd, OxT1, 0xCO, 0x37, Ox82, 0x17, 0xAaz, Ox18, 0x81, 0x70, Ox56E, 0x33, 0XDA, OXBEE, IxBR,
DudF, OxpC, OuTo, bl OxCL, Ox1E, dxb8, 0uTC, QxCl, 0x7TE, Dued, 0x3%, QuFC, Ox78, OxBE, JxBZ,
Oxlh, OxEF, Oxe2, 0xCD, OxCT, 0x82, 0x38, 0x1L, Ox23, 0x04, Dx7E, Oxel, 0x02, OxFE, OxF0, OxEF,
Du3F, OxBED, Ox00, 0xEF, Ox83, 0xC0, 0x03, Ox2B, Ox30, 0x1E, DxQC, Ox3F, OxBO, 0x00, OxCF, OxCl,
0xFQ, O0x03, 106, OxEQ, OxF2, OxFF, 0x7F,; 0xed, Ox01, 0x4C, OxD0, 0x51, 0x0D, 0x18, OxFe, Ox13,
Dx25, 0xdd, 0x8d, 0x67, 0024, 0x17, 0xl5, 0xe3, Oxdd, 0x79, Ox50, 0xF3, 0x08, 0xed, 0x30, 0x17,
0x3C, OXBO, 0x19, 0xF1l, 0xEQ, Ox83, 0x3E, Ox1E, 0x44, 0xF1, 085, 0xC5, 0x38, 0x2F, 0x2D, 0x51,
0x22,0x04, 0x3C, 0xEZ, Ox73, OxAR, 0x0F, Ox2C, 0x00, 0x1E, OxFE, OxFF, 0x07, Ox16, 0x60, 0x72,
0x0E,0x61, 0x07, 0x16, Ox60, 0x3E, Ox14, Ox76,0x60, 0x01, OxAG, 0x03, 0x60, 0x07, 0x16, OxCO,

25

MXM Graphics Module Software Specification Version 3.0

OxEL, OxFF, OxFF, 0xC0, Ox02, Qx38, 0x3n, Ox0F, OxBC, DxAE, DuBd, OxT9, 0xdZ, 0x78, Oxdd, OxF5,
Dx31, 0xDD, OxB7, 0x15, OxB3, Ox3F, 0xAS, OxdBd4, Ox8a, 0xE2, 0x7L, Oxdd, 0xTR, 0x0F, Ox38, OxF2,
IxBE, OxE2, 0xd1, 0xC4, OxF3, 0x59, 0xC5, 0x27, 0x02, 0x9F, 0x5E, 0x0D, O0x19, 0x21, 0x30, 0x&8F,
OxEC, 0x3E, 0xB0, 0x00, Ox6C, OxF3, 0xFF, 0x1F, 0x58, 0x80, 0xC9, 0x33, OxEQ, OxB1, 0x05, 0x18,
O0xBF,Ox86, 0x1D, 0x58, OxA0, OxES, 0x60, OxDE, 0x31, 0x05, Ox70, 0xF%, O0xFF, 0x3F, 0xBO, 000,
OxAG, Ox86, OxFE, 090, OXE6, 0x5E, 0x80, 0x41, 0xDE, Oxk2, Ox70, 0x51, 0x89, 0x13, 0xC8, 0xF0,
O0x0F, Ox2C, OxBE, 0x1A, Ox78, Ox1A, 0x0F, Ox2C, 0x3E, 019, OxB4, 0x7TA, 0x65, 0xF5, 0x5D, 0xC1,
Ox08, OxEF, 0xAC, Ox3E, Ox1E, OxFE, 0xC0, Ox16, 0x2E, Ox46, OxBC, 0x08, Ox0F, Ox2C, 0x00, 0x18,
OxFE, OxFF, 0x07, Oxl6, Oxed, 0x72, 0x5Y9, 0xF0, 0x81, 0x05, OxFE, 0x8E, 0x86, Ox1D, 0x58, 0x80,
DxES, Oxed, OxDE, 0x81, 0x05, OxT0, 0xFY, 0xFF, Ox3F, 0xB0, 0x00, OxAs, 0x4E, Ox28, 0xde, 0x38,
OxDF, Ox77, 0xB4, 0xCE, Ox0F, Ox6C, 0x0C, Ox22, 0x54, 0xBC, Ox30, 0x0F, 0x2C, OxBE, OxAF, 0x59,
OxFl, Ox81, 0x85, 0xCC, 0xC1, 0xF7, 0x56, 0x83, 0xBC, 0xB3, 0xB4, OxE8, 0xFB, 0xB&, OxFe, 0x3a,
0xFd, OxDe, OxaE, 0xB4, 0x58, OxCF, OxAC, Ox3E, OxB0, 0x00, OxeC, OxFH, 0=FF, 0x1F, Ox5H, Ox80,
OxCh, 051, OxEQ, =81, 005, Ox18, 0«8F, Ox86, Ox1D, 0x58, 0xA0, OxES, 0xa0, 0«08, Ox81, Ox05,
D70, 0xF S, dxFF, 0x%3F, 0xB0, Ox03, 0«AE, 0x0E, Ox08, 0=C7T, 0x1B, 0P 7T, 0x25, 0xCh, 057, 0%62,
DxbF, OxDd, Ox3C, 0xF0, 008, OxAF, 0xAC, OEC, O%BC, 0x72, 0xdd, 0x0F, 0EC, 0xCh, 0x7TE, %58,
D00, Oxl16, OxCh, 0x77, 0817, OXDF, 0x56, 0x8C, Ox1A, 0x29, 0xF0, OxAd, Ox9B, 0xFl, Ox9F, OxED,
Dx 70, Oxeld, dx0l, 0x0D8; OXF],; OxFF, dx3F; 0xB0, Ox00, 0x8F; OxA3; 0xB0, 0x0F ; O0x2C, OxC0, X7 7,
Dx3d, 0xFC, dxC0, 0x02, 0x3C, Ox07T, dxC3, 0x0F, 0x2C, 0x80, OxCE, 0xXFF, 0xFF, 0x81, 0x00, Ox70,
Du7h, Oxdd, OuBE, Pxlh, Ox27, OxCe, 0x1B, DxCL, Ox9E, OxCS, DxBR, Ox9A, 0xAF, DxAS, OxdE, OxB3,
DuF9, O, OxEZ, 6B, Ox30, Qxal, OxBC, OuFP6, OxED, Ox66, DxAR, OxTa, 0xBE, 0xAR, Oxld, 0xFE,
OxCO, OxCD, Ox08, 0x01, 0xC2, OxBC, 0x03, OxBC, OxBA, 0xEF2, 0xC0, Ox02, OxB0, OxEL, OxFF, Ox7F,
DueQ, Ox03, Ox26, 0x77, 0841, Ox1F, 0x58, 0xd0, OxED, Ox6d, DxDE, Ox31, 0x05, 0x 08, OxOE, OxE86,
OxlF, Ox5S8, 0x00, Ox27T, Ox0A, QxaD, 0xFR, OxD4, Oxad, 0xDd, DxAR, Oxd1, 0x99, 0xlA, Oxa5, Oxlh,
Dxbd, OxEA, 0x53, 0xA9, Ox31, Ox63, 0xC7T, Oxld, 0x07, 0x7C, Ox08, 0xE8, 0xdd, 0x60, 0x79, 0xCF,
Ox06, 0x81, 0x58, 0x06, OxA5, Ox40, 0x2C, OxFD, 0xD5, 0x22, Ox10, 0x07, 0x07, 0x01, OXFF, 0x1F,
OxC4,0x11, 0x9F, 0x1C, Ox02, 0x23, Ox26, OxC0, 0x28, 008, Ox80, OxA8, Ox0Z, OxBC, OxDA, 000,
OxA3, 0x20, 0x34, 0xAZ, Ox0E, 0x30, Dx6h, Ox04, 0x8C, 0x82, OxD0, 0x88, Ox4h, 0xC0, OxAR, 0x15,
0x30,0x04, 0x42, 0x23, 0x6A, 0x01, DxA3, 0x66, OxC0, 028, Ox08, 0x8D, OxAS, Ox06, 0x3C, 0xDA,
Ox01,0xA3, 0xZ0, 0x34, OxAZ, 0x1E, 0x30, Ox6A, 0x08, 0xBC, OxB2, 0xD0O, 0x8S5, 0xBA, 0xCO, 0xAS,
Dx?5,0x30, 0x0A, 0x42, Ox23, Ox6d, 0x02, 0xA3, Oxas, 0xCO, Ox28, 0x08, 0x80, 0=AR, 0xCA, 0x8C,
0xBE, Ox59,0x82, 0=x31, 0x10, 0x1A, Ox51, 0x17, 0x08, OxFB, OxFF, Ox03

11

S hsseciated MOF declaration

[WMTI, Dynamic, Provider ("WMIFrov"™),
Locale (M5 0x408%),
GUID{" {FAECBSCAC-ACAE-debd-B577-931EAIZRAZCCO} ")]
class MEM20Mekhod
i
[key, read]
String InstanceNams;
[read] Boolean Achive;
[WmiMethodId (L),
Degzription ["MEMICMethod™)
] uinti2 MMM20Method;
i

[WMI, Dynamic, Provider ("WMIFrowvw"™),
Locale ("MSYW W 0xJ09™),
GUIDO{"{EO0GBDE&Z2-EETS5-4BF4-A583-B23E&FABFE31) ™)]
class MEMZ0Ewvwent8d 1 WHMIEwent
{
[key, read]
String InstanceMams;
[read] Boolean Actiwve;
[WmiDataId(l),
Description ("MEMZIEvent80%)
] uint32 M¥XM20Event80;
Vi

[WMT, Dynamic, Provider ("WMIFrow"),
Locale (FMENADxI0E"),
GUID{"{ FADEEBDOF=-0C5F - eED=-AB2E-Q4 36 2B4FDCBC) ")]
class MEMIOEvent B8l : WMIEvent
{
[key, read]
String Instancebams;
[r2ad] Boole=an Active;
[WmiDatalId(1),
Description ("MEMI0Eventz21")

MXM Graphics Module Software Specification Version 3.0

] wintiZ2 MEM2O0Ewventil;
bi

[WMI, Dynamic, Prowvider ("WMIProw"),
Locale ("MS%\0x403"),
GUID{"{1E519311-3ET75-4208-B02E-ERBE1TEIFFA1F) ™)]
class MEMZOEventB& : WMIEvent
i
[key, read]
String Instanceblams;
[read] Boolean Actiwve;
[WmiDataId(l),
Description ("MEMZ0Event86™)
I wint32 MEM2OEventdG;
Vi

[WMI; Dynamic; Provider ("WMIProw");
Locale (FMSHN0x408%)
GUID{"{3T7F85341-4418-4F24-8533-38FFCT295542)") 1]
class MEXM2ZOEwvent 87 @ WMIEwvent
i

[key, read]

Gtring Instancelams;

[read] Boolean Active;

[MimiDatald(l),

Degcription ("MXMIOGEventdT")

] wint3i2 MMM20Ewenti7;
Vi

[WHMI, Dynamic, PFrovider ("WMIFProw"),
Locale ("M5% 4 0xd09™),
GUID (™ {53210 2F40-00C4-402d-AC1B-B4E444EF9EDZ) ™) |
class MYM2ZO0EventDd : WHMIEvent
i
[Eey, read]
String Instanceblams;
[Eead] Boolean ARctive;
[MmiDataId(l),
Description ("MEXMZ 0EventDD®)
] wint3iZ2 MXM2OEventD(;
Vi

[WMI, Dynamic, Frovider ("WMIFrow");
Locale ("MEAADXI09"),
GUID{"{23263085-0R5F-deal-8B1C-DREF1IFTOORAF }™)]
clazz MXM20EventDl & WMIEvent
i
[rey, read]
String Instancebams;
[E2ad] Boole=an Active;
[MimiDatald(l),
Description ("MEMI0EventDl™)
] uinti3iz M¥M20EwventDl;

i

[WMI, Dynamic, Provider ("WMIFrowv"),
Locale ("M5W Y\ 0xd09"),
GUID{" {BEOTO0E-DEO3-4714-9AE2-9DBABSITAB0S} ™)]
class MEM2OEventD2 @ WMIEvent
1

[key, read]

String Instancebames;

[read] Boolean Active;

[WminataTdi(ll,

Description ("MXMZ0EventD2®)

] vwint3Z2 MEMZOEventD2;
i

[WMI, Dynamic, Frovider ("WMIFrow"),
Locale ("MS W 0xJ09"),
GUID{M{210355E1l-498D-4cl £-ARDL-CSCEFALODOSIF ™)]
class MMMZ20EventD3 : WMIEwvent

27

[key,

MXM Graphics Module Software Specification Version 3.0

read)

String InstanceMams;

[read] Bogolean Aotive;
[WmiDataIdil),

Description ("MEMZO0EventD3"™)
1] wint3i2 MMMZO0EventD3;

1

[WMI, Dyvnamic, Prowvider ("WMIFrowv"),

Locale (™

MES Y 0xd09"),

GUID(" {EDBCEDF 1 -BRECS—-420a—-A3C-32ZB1D3VCEART"™) |
class MMNM2O0EventDd : WMIEwvent

1
[Reyv,

raad]

string Instancablamme;

[read] Boolean Aokive;
[WmiDataId(l),

Description ("MEXMZ0EventDd®)
] uint3z2 MYXM2O0EventDd;

bi

[WMI; Dynamic, Prowvider ("WMIFrow"™),
Locale ("MSs A 0xd09"h ,

GUID("{3TTEEAEL=-13DE-41l fE-A0%e~-0F03528BRE6E3]) ")]
clazs MMMZ0EventDS @ WHMIEwent

1

[key, read]

String Instanceblams;
[Eead] Boolean Actiwve;
[Mmilatald(l],

Description (*MXMZ 0EventDS®)

| uint3iZ MEMAUEwentDs;

3.3.2. _DSM (Device Specific Methods)

In order to prevent collision of method names and allow future expansion, the standard _DSM method
is exposed under each GPU to provide support for MXM sub-functions.

Arguments
Arg0: GUID (16 Byte Buffer)

MXM_DSM_GUID {4004A400-917D-4cf2-B89C-79B62FD55665}

Arg1: Revision ID (DWord Integer)

The requested interface revision 1D expressed in Binary Coded Decimal form where
the Lower bytes are the Major and Minor version respectively. If 10 then the default,
highest level of interface 1s supported.

MXM_REVISION_ID 0x00000300 Interface revision level

Arg2: FunctionCode (DWord Integer)

28

The tunctions supported through this intertace method include:

MXM_FUNC MXSS 0x00000000 Supported Sub-Functions
MXM_FUNC_ MXMI 0x00000018 Platform MXM Capabilities
MXM FUNC MXMS 0x00000010 Get the MXM Structure

MXM Graphics Module Software Specification Version 3.0

MXM_FUNC MXPP 0x00000004 Get/Set Platform Policies
(see Chapter 4)
MXM_FUNC_MXDP 0x00000005 Get/Set Display Config
(see Chapter 4)
MXM_FUNC _MDTL 0x00000006 Get Display Toggle List
(see Chapter 4)
MXM_FUNC_EVENTLIST 0x00000012 Flexible Event Notifiers
(see Chapter 4)
MXM_FUNC MXCB 0x00000019 Query/Call System

Callbacks (see Chapter 4)
Arg3: Arguments (Package)
Following, see description of arpuments and return values per sub-function.
On Return

Sub-tunction 0 and unsupported function calls always returns a butfer. Other sub-
functions may return a buffer or a package as defined in the functon.

When a single DWord 1s returned the following values have special meaning,
controlled by reserved Bit31 as follows:

Status (DWord Integer)
MXM_ERROR_SUCCESS 0x00000000 Success
MXM _ERROR UNSPECIFIED 0xB80000001 Generic unspecified error

code

MXM_ERROR_UNSUPPORTED 0xB80000002 FunctionCode or
SubFunctionCode not
supported by this system

29

MXM Graphics Module Software Specification Version 3.0

Example

i
L
HF
F
Ny

The following is hypothetical stripped-down example,

_D5M Device Specific Methaod
Argd: UUID Unigque function identifier
Argl: Integer Rewvision Level
ArgZ: Integer Function Index {0 = Return Supported Functions)
Argl: Package Farameters

Mathod (_D3HM, 4, HMotSerialized)

{

3.3.2.1.

Sub-function () returns the interface sub-funcoons suppm‘ted h}' the method.

30

£/ Switch based on which unigue function identifier was passed in

Ff Hote:ToUUID("{4004R400-017D-4cf2-BEOC-TI9BGZ2FDS5665}") 15 not well supported
If {(LEgual (UCMF {Arg0, Buffer() {0=x00, O=xA4, Ox04, O0xd40, O0x7D, Ox21l, OxFZ, 0OxdC,
D=xBH, O0=x9C, 0x7%, O0xB&, Ox2F, 0xD5, 0x56, 0xeS 1¥))

Switch {(Argl)

{
iy
S Function 0: MEM_FUNC_MX3SS
case [(0)
{
/4 Bub-Functions 0, 16, 24 are supported
Feturni{Buffer (1 {0x010130011%)
}
i
Jf Function 24: MXM_FUNC_MXMI
case [(24)
(
Feturni{Buffer() {0x30})
I
A
S Function 16: MXM_FUNC_MXMS
case (16)
(
/f RBeplace with Platform 5I5 info
If (LEgual {Argl, 0x30)) /|
Return (MXM3)
}
I
i
i ete
L
I

MXM FUNC MXSS — Return Supported Sub-Functions

Arguments

None

On Return

The return buffer has a bir set for every sub-function ﬁuppnrted.

MXM Graphics Module Software Specification Version 3.0

Table 3-1. MXM FUNC MXSS Return Buffer

Bits Definition
31:26 | Reserved. Must be zero
25 1 = MXM_FUNC_MXCB, Get System Callbacks
24 1 = MXM _FUNC MXMI, Specification Support Level
23:19 | Reserved. Must be zero.
18 1= MXM _FUNC EVENTLIST, Reassign event notifiers
17 Reserved. Must be zero.
16 1 = MXM_FUNC_MXMS, Get platform MM Structure
15:7 | Reserved. Must be zero.
B 1 = MXM FUNC MDTL, Get Display Toggle List
5 1 = MXM_FUNC_MXDP, Get Display & Hot-Key information
4 1 = MXM FUNC MXPP, Get/Set the platform policy settings
3:1 Reserved. Must be zero,
0 1 = MXM_FUNC MXSS, Supported Sub-Functions (this call)
Example
/f Function 0: MXM_FUNC_MXSS
case (0} f
// Sub-Functicns 0, 16, 24 are supported
| Return (Buffer () (0x@1010001})
3.3.2.2. MXM_FUNC_MXMI — Return Specification Support Level

Sub-function 24 15 a rﬂquired method which returns information about the level of the MXM

software specification that the system supports. Calling this method with an argument (Argl) of “0”
shall always return the default or highest level supported. If additional versions of the MXM software

interface are supported, the method shall indicate the specific version in the return value when

queried with that version value as an input argument.

Arguments

None, Note that Argl already contains the requested revision level.

On Return

The return buffer contains the same version level as input ;"Lrgl if 1t 1% :-;upp-urtud. If

Argl was 0, returns the highest supported version level.

31

MXM Graphics Module Software Specification Version 3.0

Table 3-2. MXM FUNC MXMI Return Buffer

Bits Definition
7:0 Supported Interface Version
Requested version level in BCD format.

31:8 Reserved. Must be zero

Example

J/ Function 24: MXM_FUNC_MXMI
case (24) |
Return (Buffer () {0x30})

3.3.2.3. MXM FUNC MXMS — Return MXM Structure

Sub-function 16 is a required method which returns the size of the MXM structure, and the structure
(or a segment up to 4 Kbytes if the structure is larger than 4 KB). If supported a system may provide
different version MXM software structures depending on the caller requested version.

Arguments

The requested MXM interface version level.

Table 3-3. MXM_FUNG_MXMS Structure Identifier

Bits Definition
7:0 Page Offset

4KE Page Offset into the object i.e. 0 = first 4 KB page, 1 = second 4 KB page,
elc

15:8 Reserved. Must be zero

31:16 | MXM Structure |dentifier

Requested version level of MXM structure in BCD format (for example: 0030h =
3.0, etc.). If zero, then the structure version indicated in the return of MXMI will
be supplied.

To obtain an additional vendor specific data block, specify an identifier in the
range Ox80-0x8F. If the system does not contain such a data block, it should
return an error. Details for any such OEM or graphics vendor specific data
blocks are outside the scope of this document.

MXM Graphics Module Software Specification Version 3.0

On Return
The MXM structure as a Buffer,

Example

Mame (MXM3, Buffer({) {...})} // An MM v 3.0 structure

J/ Functicon 16: MXM_FUNC_MXMS
case (16) |
If {LEgual (Argl, 0x30))
Eeturn (MXM3)
}

33

MXM Graphics Module Software Specification Version 3.0

4 Additional MXM System Interfaces

Minimum interface requirements are outlined in Chapter 3. The following interfaces may be required
depending on system features.

4.1. Additional MXM INT 15H System BIOS Callbacks

4.1.1. Function 2 — Return a Pointer to the EDID Structure for the
I nternal Panel

This is a required function for systems containing an internal flat panel without an EDID on

DDC/ Aux. This functon allows the VBIOS to receive a pointer to the EDID structure that should
be used for the internal flat panel in the system. This is required in cases where the panel being used
does not have an EDID structure which can be read through DDC/Aux lines. This structure resides

in the SBIOS ROM area or in another memory location that is accessible in real mode during video
POST.

Entry:
AX = 5F80h
BL = 02h
BH = FFh
EBX[16:31] = Adapter ID (see above)
EDX = Display device identifier (32-bit value as used in _DOD)
Return:
AX = D05Fh to indicate that the system bios supports this function
BL = EDID structures returned

03 = 128byte EDID 1.4 structure
04 = 128byte EDID 1.4 followed by a 128byte DI-EXT block
ES:DI = Pointer to the EDID structure in real mode memory (<= 1ME)

The EDID structure shall comply with VESA E-EDID multi-block format. The first block of 128
bytes shall be a VESA 1.4 EDID. A digital extension in VESA DI-EXT format may optionally also
be included. The VBIOS will attempt to read the EDID using this Int15h callback first, then attempt
to read the panel EDID via DDC, only if this function fails. If present, EDID information shall
override MXM structure information. For example, as relates to link width or pixel depth.

34

MXM Graphics Module Software Specification Version 3.0

41.2. Function 3 — Select Output Device Channel

This is an optional function, which is only required if a multiplexer is used for controlling DDC or
display outputs. The function is used when performing a display switch to an output device that is
controlled by a multiplexer connected to a GPIO. In order to allow the SBIOS to properly set up
selection of the DDC port and/or the data output pins, the VBIOS will call this function before
attempting to access the DDC port for the device or to set up and enable output to the device.

When selecting multiplexed DDC lanes, the VBIOS will call to acquire, and call again to release when
the channel is no longer needed. If DDC lanes are shared between displays the SBIOS is responsible
for creating a mutex to co-ordinate between VBIOS (thru Int15h/EFI) and driver (thru MXMX)
access. It the VBIOS has acquired the mutex first then a simultaneous a