
1

SharkFest ’17 Europe

SSL/TLS Decryption
uncovering secrets

Wednesday November 8th, 2017

Peter Wu
Wireshark Core Developer

peter@lekensteyn.nl

mailto:peter@lekensteyn.nl

2

About me

I Wireshark contributor since 2013, core developer since 2015.

I Areas of interest: TLS, Lua, security, . . .

I Developed a VoIP product based on WebRTC.

I Cloudflare crypto intern.

3

Secrets

I Things that people care about: pictures,
videos, documents, email conversations,
passwords, . . .

I Application Data: cookies, API keys, Request
URI, User Agent, form data, response body, . . .

I How to keep these safe when sending it over
the internet or over your local Wi-Fi network?

4

Transport Layer Security (TLS)

I Provides secure communication channel between two endpoints (client and server).
I Network protocol with two components:

I Handshake Protocol: exchange capabilities, establish trust and establish keys.
I Record Protocol: carries messages and protects application data fragments.

IP

TCP

TLS

Application

. . .

Client

TLS

TCP

IP
. . .

TCP

IP
. . .

IP

TCP

TLS

Application

. . .

Server

5

Secure Sockets Layer (SSL) versus Transport Layer Security (TLS)

I SSLv3: old (RFC 6101, 1996) and deprecated (RFC 7568, 2015). Do not use it!

I TLS 1.0 (RFC 2246, 1999), 1.1 (RFC 4346, 2006), 1.2 (RFC 5246, 2008).
I Changes:

I New versions are generally fixing weaknesses due to new attacks.
I TLS 1.0 (RFC 3546, 2003) and up allow for extensions, like Server Name Indication

(SNI) to support virtual hosts.
I TLS 1.2: new authenticated encryption with additional data (AEAD) mode.

I “SSL” term still stuck, e.g. “SSL certificate”, “SSL library” and field names in
Wireshark (e.g. ssl.record.content type).

I Mail protocols: TLS often refers to STARTTLS while SSL directly starts with the
handshake.

6

“Secure” communication channel

I Symmetric-key algorithms: encrypt/decrypt bulk (application) data using a single
(secret) symmetric key. Examples: AES, 3DES, RC4.

I How to create such a secret? For example, AES-256 needs a 256-bit key.
I Public-key cryptography: a (secret) private key and a related public key.

I Mathematically hard to compute private key from public key.
I Encrypt data with public key, decrypt with private key.
I Limitation: maximum data size for RSA is equal to modulus size, 2048-4096 bits.
I Idea: generate a random premaster secret and encrypt it with the public RSA key.

I Where to retrieve this RSA public key from?

7

Certificates and trust

I Public key is embedded in a X.509 certificate.

I How can this certificate be trusted?

I A Certificate Authority (issuer) signs the
certificate with its private key.

I Public-key cryptography: use a private (secret)
key and a public key with small data.

I Compress data using a hash function.
Examples: SHA256, SHA1, MD5.

I Sign hash with private key, verify with public
key. Examples: RSA, ECDSA.

I Root CAs are self-signed and installed by the
OS vendor or local admin (Group Policy, etc.).

8

TLS handshake with RSA key exchange method

I Client Hello advertises supported parameters, Server Hello decides.
I Server picked RSA key exchange: TLS RSA WITH AES 128 CBC SHA.

+ Certificate (with RSA public key)
+ ServerHelloDone

9

TLS handshake with RSA key exchange method - ClientKeyExchange

I Client receives Server Hello, knows protocol version and cipher suite.

I Client generates a new random 48-byte premaster secret, encrypts it using the
public key from the Certificate and sends the result to the server in a
ClientKeyExchange message.

I Using the private RSA key, server (or anyone else!) decrypts the premaster secret.

10

TLS handshake with RSA key exchange method - Finishing up

I Both sides calculate the 48-byte master
secret based on the Client Random,
Server Random and the premaster secret.

I Both sides derive symmetric keys from this
master secret, send the ChangeCipherSpec
message to start record protection.

I Finally they both finish the Handshake
protocol by sending a Finished Handshake
message over the encrypted record layer.

I Now the actual encrypted Application
Data can be sent and received.

11

Handshake overview

Client Server

ClientHello -------->

ServerHello

Certificate*

ServerKeyExchange*

<-------- ServerHelloDone

ClientKeyExchange

[ChangeCipherSpec]

Finished -------->

[ChangeCipherSpec]

<-------- Finished

Application Data <-------> Application Data

Simplified TLS handshake (adapted from RFC 5246 (TLS 1.2))

12

Plaintext please

I Server administrators can check application logs.

I Web browsers provide developer tools.

I What if the information is not logged?

I What if you want to know what this third-party Android app is doing?

I What if the application under investigation is poorly documented?

I What if you want to debug your new HTTP/2 feature?

I Solution: packet capture plus SSL/TLS secrets!

13

Decryption using private RSA server key

Configure Wireshark with RSA private key file1:

I IP address is unused and ignored. Port
+ Protocol can be empty. These three
fields will be removed in future.

I Specify PEM-encoded key file or
PKCS#12 Key File + Password.

1See https://wiki.wireshark.org/SSL#Preference_Settings

https://wiki.wireshark.org/SSL#Preference_Settings

14

Limitations of RSA private key

I Clients usually do not have access to the RSA key, only server operators can use it.
I In case of mutual authentication (client certificates), the private key is only used

for signing. The client private RSA key cannot decrypt.
I Encrypted premaster secret is not sent with resumed sessions.

Client Server

ClientHello -------->

ServerHello

[ChangeCipherSpec]

<-------- Finished

[ChangeCipherSpec]

Finished -------->

Application Data <-------> Application Data

Message flow for an abbreviated handshake (RFC 5246, Figure 2)

15

Ephemeral (Elliptic Curve) Diffie-Hellman (ECDHE)

I Decryption using RSA private key not possible with cipher suites like
TLS ECDHE ECDSA WITH AES 128 GCM SHA256 and
TLS ECDHE RSA WITH AES 128 GCM SHA256.

I Although it has RSA in its name, it is not used for encryption, but signing.
I Instead it uses Diffie-Hellman to establish a shared secret (the premaster secret)

based on ephemeral secrets (different secrets for every session).
I Server chooses a group/curve, generates private value and its related public value

and sends it to the client. Client uses same group/curve and also generates a pair.
I Computationally hard to find the private value given the public one.

16

TLS secrets summary

I Any of these can be used for decryption with passive captures:
I premaster secret: RSA-encrypted or output from DH key exchange
I Master secret: derived from premaster secret and handshake context. Also used for

session resumption.
I Symmetric encryption key for record encryption.
I RSA private key file (for RSA key exchange, covered before).

I So how to use the master secrets?

17

SSL key log file

I Text file with master secrets2.

I Works for any cipher, including RSA and DHE.

I Clients can use this too!

I Set environment variable SSLKEYLOGFILE before starting Firefox or Chrome. The
variable is only read during startup, so restart if necessary.

I Format: CLIENT RANDOM <Client Hello Random> <master secret> .

SSL/TLS secrets log file, generated by NSS

CLIENT_RANDOM 5f4dad779789bc5142cacf54f5dafba0a06235640796f40048ce4d0d1df63ad8 a4d69a3fa4222d6b6f2492e66dca2b1fc4e2bc143df849ad45eff9f43650cc2a2e28a58873b6812f2e3b238a695085ad

CLIENT_RANDOM c2407d5ba931798e3a35f775725fb3e5aefcb5804bb50271fe3bd5fb19c90061 e419759e7b44f766df6defe6b656eda3d430754044773b6fc0a91ebff85be30e5bc9f2b1bd37e7b910cfbc4978c58e83

CLIENT_RANDOM abec6cf83ea1dcb135b21fd94bc0120dd6a37dca0fcd96efd8989d05c51cc3ab 5b4d525dfe3168132d388881033633c2aba99346c25ae8163f2191fb1053ca8f87d4305daf25cb43d698268c375c65f6

CLIENT_RANDOM dffe2c85a7d6f3c3ec34ba52ea710f0f1649e58afa02f9824d983ea74f07900e fdb58d49482f876f200ce680b9d6987434e3aca54d203fc57cc58884ddfec79595aac4c75622d2b44814910c1cca839f

CLIENT_RANDOM fbf40ada961093cd917fba97bfffe7c4b0bbf57a0cf90626dee417d3d12b3755 6b4e313d6be9316c42f47ddd3ceeef9743825bd3c3bb25ec9ac73c9c500960b07e539377ea0a47358aec77119b1c004c

CLIENT_RANDOM 2b8184f7642df4bb5979ad9a623690b08f392deb94fdb64b00d7dc78b711638b dfdbe9f4d6949eea02489eb39b2c8d7770c12928becaf0ac1e34edf48a9340fd8f951a710501a3c1c67cc0ab14e53340

CLIENT_RANDOM 7e4340c76c720d39c98e761697be0f32e1c79c6c04ade05a3f29325ac9cae612 1dfe402b85560048ae278b78febe83ee1640785b969c328d94a785ad2fb240deb19e3d3db9beaced0902f5dabe4dc91c

2File format at https://developer.mozilla.org/NSS_Key_Log_Format

https://developer.mozilla.org/NSS_Key_Log_Format

18

Using SSL key log file in Wireshark

I Configure file in Wireshark preferences: Edit → Preferences; Protocols → SSL;
(Pre-)Master Secret log filename.

I Key log file is also read during a live capture. And if the file is removed and a new
file is written, the new key log file is automatically read.

I Caveat: key log is read while processing ChangeCipherSpec. If key is written too
late, trigger a redissection (e.g. change a preference or (Un)ignore a packet).

19

Application and library support

I Any application built using NSS and GnuTLS enable key logging via the
SSLKEYLOGFILE environment variable.

I Applications using OpenSSL 1.1.1 or BoringSSL d28f59c27bac (2015-11-19) can
be configured to dump keys:

vo id SSL CTX se t k e y l o g c a l l b a c k (SSL CTX ∗ ctx ,
vo id (∗ cb) (const SSL ∗ s s l , const char ∗ l i n e)) ;

I cURL supports many TLS backends, including NSS, GnuTLS and OpenSSL. Key
logging with OpenSSL/BoringSSL is possible with curl 7.56.03

3Requires a build time option, see https://curl.haxx.se/bug/?i=1866

https://curl.haxx.se/bug/?i=1866

20

Key log with OpenSSL 1.1.0 and before

I Why: many applications (including Python) use OpenSSL.

I Problem: older OpenSSL versions have no key log callback.

I Solution: intercept library calls using a debugger or an interposing library
(LD PRELOAD) and dump keys4.

I Example with OpenSSL 1.1.0f using an intercepting library5:

$ export SSLKEYLOGFILE=some.keys LD_PRELOAD=./libsslkeylog.so

$ curl https://example.com

...

$ cat some.keys

CLIENT_RANDOM 12E0F5085A89004291A679ABE8EE1508193878AB9E909745CA032212FCA24B89 148AF5875F83E083115AA1AB16F97C4F097B5AFBE4B948C5077FD05A0F8FE1E2A68502923B259A20FAF7A9FD915A38AA

4https://security.stackexchange.com/q/80158/2630
5https://git.lekensteyn.nl/peter/wireshark-notes/tree/src

https://security.stackexchange.com/q/80158/2630
https://git.lekensteyn.nl/peter/wireshark-notes/tree/src

21

Unsupported applications for SSLKEYLOGFILE

I Windows native TLS library is Secure Channel (SChannel). Pending feature
request for Microsoft Edge browser: 6

I Extracting secrets from SChannel is not impossible (but neither easy) though7

I Apple macOS applications use SecureTransport, also not supported.

6
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/

16310230-ssl-key-logging-aka-sslkeylogfile
7
https://www.blackhat.com/docs/us-16/materials/

us-16-Kambic-Cunning-With-CNG-Soliciting-Secrets-From-SChannel.pdf

https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/16310230-ssl-key-logging-aka-sslkeylogfile
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/16310230-ssl-key-logging-aka-sslkeylogfile
https://www.blackhat.com/docs/us-16/materials/us-16-Kambic-Cunning-With-CNG-Soliciting-Secrets-From-SChannel.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Kambic-Cunning-With-CNG-Soliciting-Secrets-From-SChannel.pdf

22

Alternative ways to get the secret

I Force RSA key exchange (disable forward-secret cipher suites).

I Setup a fake CA and force traffic through a proxy like mitmproxy8, OWASP Zap,
Fiddler or Burp Suite.

I All of these methods can be detected by the client. Certificate pinning can also
defeat the custom CA method.

I The proxy interception method may also weaken security9.

I If you are really serious about a passive, nearly undetectable attack from a
hypervisor, see the TeLeScope experiment10.

8http://docs.mitmproxy.org/en/stable/dev/sslkeylogfile.html
9Durumeric et. al., The Security Impact of HTTPS Interception,

https://jhalderm.com/pub/papers/interception-ndss17.pdf
10https://conference.hitb.org/hitbsecconf2016ams/sessions/

telescope-peering-into-the-depths-of-tls-traffic-in-real-time/

http://docs.mitmproxy.org/en/stable/dev/sslkeylogfile.html
https://jhalderm.com/pub/papers/interception-ndss17.pdf
https://conference.hitb.org/hitbsecconf2016ams/sessions/telescope-peering-into-the-depths-of-tls-traffic-in-real-time/
https://conference.hitb.org/hitbsecconf2016ams/sessions/telescope-peering-into-the-depths-of-tls-traffic-in-real-time/

23

Feature: Follow SSL Stream

I Display the contents of the
decrypted application data.

I Right-click in the packet list or
details view, Follow → SSL Stream.

I Great for text-based protocols like
SMTP. For binary data, try the Hex
Dump option.

I Click on data to jump to related
packet (in packet list). Note that
display filter can hide packet, clear
the filter to avoid that.

24

Feature: Export HTTP Objects

I After decryption is enabled, HTTP
payloads within TLS (HTTPS) can
be exported.

I File → Export Objects → HTTP. . .

I Click on an item to select it in the
packet list.

I Note: does not cover HTTP2 or
QUIC (yet?) as of Wireshark 2.4.

25

Feature: Export SSL Session Keys

I Suppose you have a capture which is decrypted using a RSA private key file. How
to allow others to decrypt data without handing over your RSA private key file?

I File → Export SSL Session Keys. . .

I Generates a key log file which can be used instead of the private RSA key file.

I Note: currently contains all keys. Remove lines which are not needed (match by
the second field, the Random field from Client Hello).

26

Feature: Display Filters

I Display filters can be used for filtering, columns and coloring rules.
I Discover by selecting a field in packet list, look in status bar.
I Recognize TCP/TLS stream in packet list: Right-click TCP Stream Index

(tcp.stream) field in packet details, Apply as Column.
I Right-click field in packet details, Apply/Prepare as Filter.
I SNI in Client Hello: ssl.handshake.extensions server name
I Change in Wireshark 2.4: ssl.handshake.random selects full Client or Server

Random instead of the just the Random Bytes field. Reason: real time is often no
longer included, full bytes field is useful for matching with key log file.

27

Feature: Decode As

I Force dissector for custom ports. Decode as SSL (TCP) or DTLS (UDP).
I Select application data protocol within SSL/TLS layer (since Wireshark 2.4).
I Example: HTTPS on non-standard TCP server port 4433.

I Right-click TCP layer, Decode As. Change current protocol for TCP Port to SSL.
I Press OK to apply just for now or Save to persist this port-to-protocol mapping.
I Right-click SSL layer, Decode As. Change current protocol for SSL Port to HTTP.

I For STARTTLS protocols, select SMTP/IMAP/. . . instead of SSL for TCP Port.
I Tip: there are many protocols, just select the field, then use arrow keys or type

the protocol name (typing H gives HTTP).

28

Feature: Tshark

I Tshark: command-line tool, useful to extract information as text, especially when
the query is repeated multiple times.

I Find all cipher suites as selected by the server: tshark -r some.pcap

-Tfields -e ssl.handshake.ciphersuite -Y ssl.handshake.type==2

I List all protocol fields: tshark -G fields

I Configure keylogfile:
tshark -ossl.keylog file:firefox.keys -r firefox.pcapng.gz

I Configure RSA keyfile (fields correspond to the RSA keys dialog):
wireshark -ouat:ssl keys:’"","","","keys/rsasnakeoil2.key",""’

I Tshark manual: https://www.wireshark.org/

https://www.wireshark.org/

29

Future: TLS 1.3

I Replaces all previous cipher suites with new one. Dropped all old cipher suites (no
more CBC, RC4, NULL, export ciphers).

I RSA key exchange is gone, all ciphers are forward secret.

I Encrypted early (0-RTT) data.

I Encrypted server extensions (like ALPN)

I Encrypted server certificate.

I Multiple derived secrets for resumption, handshake encryption, application data
encryption. (Safer resumption!)

I Decryption and dissection is supported by Wireshark 2.4 (drafts 18-21 as of
Wireshark 2.4.2).

30

Conclusions

I RSA private keys cannot be used for decryption in all cases.

I The key log method (SSLKEYLOGFILE) can also be used by clients and works with
all cipher suites.

I TLS 1.3 debugging is even more difficult without decryption.

I Use latest Wireshark version, especially if you are doing any TLS 1.3 work.

